Skip to main content

Molecular Characterization and Diagnosis of Macrophomina phaseolina: A Charcoal Rot Fungus

  • Chapter
  • First Online:
Molecular Identification of Fungi

Abstract

Macrophomina phaseolina is a global pathogen that inflicts losses on many agriculturally important crops worldwide, particularly in warm and tropical environments. Efforts to divide M. phaseolina into subspecies have been unsuccessful largely due to the extreme intraspecific variations in morphology and pathogenecity. The failure to adequately identify and detect M. phaseolina using conventional culture-based morphological techniques has led to the development of nucleic acid-based molecular approaches. PCR-based methods are highly sensitive and specific and have the potential to replace traditional technologies. Recently, species-specific oligonucleotide primers and digoxigenin (DIG)-labeled probe were designed at internal transcribed spacer (ITS) region for identification and detection of M. phaseolina. Accurate diagnosis and early detection of pathogens is an essential step in agriculture and environmental monitoring including plant disease management. The main objective of this review is to outline various molecular tools used for detection, identification, and characterization of M. phaseolina isolates. We also emphasize the significance of advanced technique such as real-time polymerase chain reaction (PCR) for qualitative and quantitative assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaiah K, Satayanarayan A (1990) Stem canker on black gram (Vigna mungo) in Andhra Pradesh. Indian J Plant Protect 18:136

    Google Scholar 

  • Alvaro MRA, Ricardo VA, Carlos AAA, Valdemar PC, David SJF, Silvana RRM, Luis CB, Mauro CP, Claudio GPC (2003) Genotypic diversity among Brazilian isolates of Macrophomina phaseolina revealed by RAPD. Fitopatol Brasil 28:279–285

    Article  Google Scholar 

  • Arora DK, Hirsch PR, Kerry BR (1996) PCR-based molecular discrimination of Verticillium chlamydosporum isolates. Mycol Res 100:801–809

    Article  CAS  Google Scholar 

  • Arvanitidou M, Spaia S, Velegraki A, Pazarloglou M, Kanetidis D, Pangidis P, Askepidis N, Katsinas C, Vayonas G, Katsouyannopoulos V (2000) High level of recovery of fungi from water and dialysate in haemodialysis units. J Hosp Infect 45:225–230

    Article  PubMed  CAS  Google Scholar 

  • Ashby SF (1927) Macrophomina phaseolina (Maubl.) Comb. Nov. The pycnidial stage of Rhizoctonia bataticola (Taub.). Butl Trans Br Mycol Soc 12:141–147

    Article  Google Scholar 

  • Babu KB (2008) Genomic fingerprinting and development of molecular probes for identification and detection of Macrophomina phaseolina. Ph.D. Thesis, Bundelkhand University, India

    Google Scholar 

  • Babu KB, Srivastava AK, Saxena AK, Arora DK (2007) Identification and detection of Macrophomina phaseolina by using species-specific oligonucleotide primers and probe. Mycologia 99:733–739

    Google Scholar 

  • Babu KB, Reddy SS, Sukumar M, Arora DK (2009b) SCAR derived, Quantitative Real-Time PCR assay for enumeration of phytopathogenic fungi - Macrophomina phaseolina. Appl Environ Microbiol. unpublished data

    Google Scholar 

  • Babu KB, Reddy SS, Yadav KM, Sukumar M, Mishra V, Saxena AK, Arora DK (2009a) Geo-diversity among Indian isolates of Macrophomina phaseolina by using RAPD marker. Indian J Microbiol (In press)

    Google Scholar 

  • Balesdent MH, Destheux C, Gall PR, Rouxel T (1995) Quantification of Leptosphaeria maculans growth in cotyledons of Brassica napus using ELISA. J Phytopathol 143:65–73

    Google Scholar 

  • Bayman P, Cotty PJ (1989) Vegetative compatibility groups in Aspergillus flavus. Phytopathology 79:1186 (Abstr.)

    Google Scholar 

  • Bowman BH, Taylor JW, Browilee AG, Lee J, Lu S, White TJ (1992) Molecular evolution of the fungi: relationship of basidiomyetes and chytridiomycetes. Mol Biol Evol 9:285–296

    PubMed  CAS  Google Scholar 

  • Bridge PD, Arora DK (1998) Interpretation of PCR methods for species definition. Application of PCR in mycology. CAB International, pp 63–84

    Google Scholar 

  • Bruns TD, Vilgalys R, Barns SM, Gonzalez D, Hibbert DS, Lane DJ, Simon LS, Szaro TM, Weisburg WG, Sogin ML (1992) Evolutionary relationships within fungi: analysis of nuclear small subunit rRNA sequences. Mol Phyl Evol 1:231–241

    Article  CAS  Google Scholar 

  • Buscot F, Wipf D, Di Battista C, Munch JC, Botton B, Martin F (1996) DNA polymorphism in morels: PCR-RELP analysis of the ribosomal DNA spacers and microsatellite-primed PCR. Mycol Res 100:63–71

    Article  CAS  Google Scholar 

  • Buth DG (1984) The application of electrophoretic data in systematic studies. Annu Rev Ecol Syst 15:501–522

    Article  Google Scholar 

  • Chase TE, Jiang Y, Mihail JD (1994) Molecular variability in Macrophomina phaseolina. Phytopathology 84:1149

    Google Scholar 

  • Chattanaver SN, Adiver SS, Nargound VB, Rao SS, Kulkarni S (1988) Laboratory evaluation of fungicide against Rhizoctonia bataticola causing root rot of Casuarina. Curr Res 17:160–161

    Google Scholar 

  • Cloud GL, Rupe JC (1991) Morphological instability in a chlorate medium of isolates of Macrophomina phaseolina from soybean and sorghum. Phytopathology 81:892–895

    Article  Google Scholar 

  • Cook WL, Schlitzer RL (1981) Isolation of Candida albicans from freshwater and sewage. Appl Environ Microbiol 41:840–842

    PubMed  CAS  Google Scholar 

  • Correll JC, Puhalla JE, Schneider RW (1986) Identification of Fusarium oxysporum f.sp.apii on the basis of colony size, virulence, and vegetative compatibility. Phytopathology 76:396–400

    Article  Google Scholar 

  • Correll JC, Klittich CJR, Leslie JF (1987) Nitrate nonutilizing mutants of Fusarium oxysporum and their use in vegetative compatibility tests. Phytopathology 77:1640–1666

    Article  Google Scholar 

  • Crall JM (1948) Charcoal rot of soybean caused by Macrophomina phaseoli (Maubl.) Ashby. Ph.D. dissertation, University of Missouri, Columbia, p 148

    Google Scholar 

  • Das ND (1988) Effect of different sources of carbon, nitrogen and temperature on growth and sclerotial production of Macrophomina phaseolina (Tassi) Goid, causing root rot/charcoal rot disease of castor. Indian J Plant Pathol 6:97–98

    Google Scholar 

  • Das ND, Sankar GRM (1990) Effect of root rot disease caused by Macrophomina phaseolina Tassi (Goid). Of castor (Ricinus comunis) by statistical modeling of cultural practices of carbendazim applications. Indian J Mycol Plant Pathol 20:234–240

    Google Scholar 

  • Das IK, Fakrudin B, Arora DK (2008) RAPD cluster analysis and chlorate sensitivity of some Indian isolates of Macrophomina phaseolina from sorghum and their relationships with pathogenicity. Microbiol Res 163:215–224

    Article  PubMed  CAS  Google Scholar 

  • Dhingra OD, Sinclair JB (1978) Biology and pathology of Macrophomina phaseolina Vicosa. Imprensia Universitaria, Universidade Federal de Vicosa, Brazil, pp 166

    Google Scholar 

  • Doggett MS (2000) Characterization of fungal biofilms within a municipal water distribution system. Appl Environ Microbiol 66:1249–1251

    Article  PubMed  CAS  Google Scholar 

  • Edel V, Steinberg C, Gautheron N, Alabouvette C (2000) Ribosomal DNA-targeted oligonucleotide probe and PCR assay specific for Fusarium oxysporum. Mycol Res 104:518–526

    Article  CAS  Google Scholar 

  • Edmunds LK (1964) Combined relation of plant maturity, temperature, and soil moisture to charcoal stalk rot development in grain sorghum. Phytopathology 54:514–517

    Google Scholar 

  • Eparvier A, Alabouvette C (1994) Use of ELISA and GUS-transformed strains to study competition between pathogenic and non-pathogenic Fusarium oxysporum for root colonization. Biocont Sci Technol 4:35–47

    Article  Google Scholar 

  • Falcao DP, Leite CQF, Simoes MJS, Giannini MJSM, Valentini SR (1993) Microbial quality of recreational waters in Araraquara, SP, Brazil. Sci Total Environ 128:37–49

    Article  PubMed  CAS  Google Scholar 

  • Faris MA, Sabo FE, Cloutier Y (1986) Intraspecific variation in gel electrophoresis patterns of soluble mycelial proteins of Phytophthora megasperma isolated from alfa alfa. Can J Bot 64:262–265

    Article  CAS  Google Scholar 

  • Gaudet J, Julien J, Lafay JF, Brygoo Y (1989) Phylogeny of some Fusarium species, as determined by large subunits rRNA sequence comparison. Mol Biol Evol 6:227–242

    Google Scholar 

  • Goidanich (1947) Differential responses of Guayule (Parthinium arginatum gray) genotypes to culture filtrate and toxin from Macrophomina phaseolina (Tassi) Goid. Kuti. Jo; Schading RL, Latigo GC, Bradfold JM. Phytopathologisete Zeitschrift 145(7):305–311

    Google Scholar 

  • Guiver M, Levi K, Oppenheim BA (2001) Rapid identification of Candida species by TaqMan PCR. J Clin Pathol 54:362–366

    Article  PubMed  CAS  Google Scholar 

  • Hao-Zhi Y, Ruey FL (2006) Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica. Fungal Genet Biol 43:430–438

    Article  Google Scholar 

  • Hibbert DS (1992) Ribosomal RNA and fungal systematics. Trans Mycol Soc Jpn 33:533–556

    Google Scholar 

  • Irina SD, Alexei GK, Monika K, John B, George S, Christian PK (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42:813–828

    Article  Google Scholar 

  • Jaccard P (1908) Nouvelles researches sur la distribution florale. Société Vaudoise des Sci Naturelles Bull 44:223–70

    Google Scholar 

  • Jamaux I, Spire D (1994) Development of polyclonal antibody based immunoassay for the early detection of Selerotina selerotioum in rapeseed petals. Plant Pathol 43:847–862

    Article  Google Scholar 

  • Jana TK, Sharma TR, Prasad RD, Arora DK (2003) Molecular characterization of Macrophomina phaseolina and Fusarium species by a single primer RAPD technique. Microbiol Res 158:249–257

    Article  PubMed  CAS  Google Scholar 

  • Jana TK, Sharma TR, Singh NK (2005a) SSR-based detection of genetic variability in the charcoal root rot pathogen Macrophomina phaseolina. Mycol Res 109:81–86

    Article  PubMed  CAS  Google Scholar 

  • Jana TK, Singh NK, Koundal KR, Sharma TR (2005b) Genetic differentiation of charcoal rot pathogen, Macrophomina phaseolina, in to specific groups using URP-PCR. Can J Microbiol 51:159–164

    Article  PubMed  CAS  Google Scholar 

  • Joye GF, Paul RN (1992) Histology of infection of Hydrilla verticillata by Macrophomina phaseolina. Weed Sci 40:288–295

    Google Scholar 

  • Kaur NP, Mukhopadhyay AN (1992) Integrated control of chickpea wilt complex by Trichoderma and chemical methods in India. Trop Pest Manag 38:372–375

    Article  CAS  Google Scholar 

  • Kitagawa T, Sakamoto Y, Furumi K, Ogura H (1989) novel enzyme immunoassay for specific detection of Fusarium oxysporum F.sp. cucumerinum and for general detection of various Fusarium species. Phytopathology 79:162–165

    Article  Google Scholar 

  • Knox-Davies PS (1967) Mitosis and aneuploidy in the vegetative hyphae of Macrophomina phaseolina. Am J Bot 54:1290–1295

    Article  Google Scholar 

  • Larkin RP, Hopkins DL, Martin FN (1988) Differentiation of strains and pathogenic races of Fusarium oxysporum F.sp. niveum based on vegetative compatibility. Phytopathology 78:1542 (Abstr.)

    Google Scholar 

  • Lee SB, White TJ, Taylor JW (1993) Detection of Phytophthora species of oligonucleotide hybridization to amplified ribosomal DNA spacers. Phytopathology 83:177–181

    Article  CAS  Google Scholar 

  • Leong SA, Holden DW (1989) Molecular genetic approaches to the study of fungal pathogenesis. Annu Rev Phytopathol 27:463–481

    Article  CAS  Google Scholar 

  • Li KN, Rouse DI, German TL (1994) PCR primers that allow intergeneric differentiation oa ascomycetes and their application to Verticillium spp. Appl Environ Microbiol 60:4324–4331

    PubMed  CAS  Google Scholar 

  • Mandal R, Sinha MK, Ray MKG, Mishra CBP, Chakrabarty NK (1998) Variation in Macrophomina phaseolina (Tassi) Goid causing stem rot of jute. Environ Ecol 16:424–426

    Google Scholar 

  • Mayek-Pérez N, López-Castañeda C, Acosta-Gallegos JA (1997) Variación en características culturales in vitro de aislamientos de Macrophomina phaseolina y su virulencia en frijol. Agrociencia 31:187–195

    Google Scholar 

  • Mayek-Pérez N, Lopez-caataneda C, Gonzalez-Chavira M, Garch-Espinosa R, Acosta-Gallegos J, de la Vega OM, Simpson J (2001) Variability of Mexican isolates of Macrophomina phaseolina based on pathogenesis and AFLP genotype. Physiol Mol Plant Pathol 59:257–264

    Article  Google Scholar 

  • Mihail JD (1992) In Methods for research on soilborne phytopathogenic fungi. In: Singleton LL, Mihail JD, Rush CM (eds) St Paul, MN, USA, American Phytopathological Society Press, pp 134–136

    Google Scholar 

  • Mihail JD, Taylor SJ (1995) Interpreting variability among isolates of Macrophomina phaseolina in pathogenicity, pycnidium production and chlorate utilization. Can J Bot 10:1596–1603

    Article  Google Scholar 

  • Molina FI, Jong S, Huffman JL (1993) PCR amplification of the 3 external transcribed and intergenic spacers of the ribosomal DNA repeat unit in three speices of Saccharomyces. FEMS Microbiol Lett 108:259–264

    PubMed  CAS  Google Scholar 

  • Mukherjee PK (1993) Biological control of collar rot, dry root rot wilt and gray mold of chickpea. Patencheru AP, India, p 36

    Google Scholar 

  • Nazar RN, Hu X, Schmidt J, Culham D, Robb J (1991) Potential use of PCR-amplified ribosomal intergenic sequences in the detection and differentiation of Verticillium wilt pathogens. Physiol Mol Plant Pathol 39:1–11

    Article  CAS  Google Scholar 

  • O'Donnel KL (1992) Ribosomal DNA internal transcribed spacers are highly divergent in the phytopathogenic ascomycetes Fusarium sambucinum (Gibberella pulicaris). Curr Genet 22:213–220

    Article  Google Scholar 

  • Osunlaja SD (1990) Tillage effects on incidence and severity of root and stalk rot caused by Macrophomina phaseolina in South West Nigeria. J Phytopathol 130:312–316

    Article  Google Scholar 

  • Pearson CAS (1982) Macrophomina phaseolina Casual organism of charcoal rot of soybean. I. Laboratory test for resistance. II. Implications of conidia in epidomology. III. Anti microbial activity of toxins. M. Sc. Thesis, Kansas State University, Manhattan, p 59

    Google Scholar 

  • Pearson CAS, Leslie JF, Schwenk FW (1986) Variable resistance in Macrophomina phaseolina from corn, soybean and soil. Phytopathology 76:646–649

    Article  Google Scholar 

  • Pecina-Quintero V, Alvarado MJ, Williams-Alanis H, Almaraz RT, Vandemark GJ (2001) Detection of double stranded RNA in Macrophomina phaseolina. Mycologia 92:900–907

    Article  Google Scholar 

  • Petrak F (1923) Kykologische Notizen VI. Anals Mycologicity 21:314–315

    Google Scholar 

  • Pun KB, Sabitha D, Valluvaparidasan V (1998) Studies on seed-borne nature of Macrophomina phaseolina in okra. Plant Dis Res 13:162–164

    Google Scholar 

  • Punithalingam E (1982) Conidiation and appendage formation in Macrophomina phaseolina (Tassi) Goid. Nova Hedwigia 36:249–290

    Google Scholar 

  • Purkayastha S, Kaur B, Dilbaghi N, Chaudhary A (2006) Characterization of Macrophomina phaseolina, the charcoal rot pathogen of cluster bean, using conventional techniques and PCR-based molecular markers. Plant Pathol 55:106–116

    Article  CAS  Google Scholar 

  • Reichert I, Hellinger E (1947) On the occurrence, morphology and parasitism of Sclerotium bataticola. Palest J Bot 6:107–147

    Google Scholar 

  • Reyes-Franco MC, Hernandez-Delgado S, Beas-Fernandez R, Medina-Fernandez M, Simpson J, Mayek-Pérez N (2006) Pathogenic and genetic variability within Macrophomina phaseolina from Mexico and other countries. J Phytopathol 154:447–453

    Article  CAS  Google Scholar 

  • Satto T, Tomioka K, Nakanishi T, Koganezawa H (1999) Charcoal rot of yacon (Smallanthus sonchifolius (Poepp. et Endl.) H.Robinson), Oca (Oxalis tuberosa Molina) and pearl lupin (Tarwi, Lupinus mutabilis Sweet) caused by Macrophomina phaseolina (Tassi) Goid. Bull Shikoku Natl Agri Exp Station 64:1–8

    Google Scholar 

  • Sharma K, Singh T (2000) Seed and seedling infection of Rhizoctonia bataticola in Vigna radiata. J Mycol Plant Pathol 30:15–18

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1992) Biological control of root rot disease complex of chickpea caused by Meloidogyne incognita race 3 and Macrophomina phaseolina. Nematologia Mediterranea 20:199–202

    Google Scholar 

  • Singh D, Nema KG, Singh D (1988) Effect of soil amendment on Rhizoctonia bataticola causing dry root rot of chickpea. International Chickpea Newslett 17:23–25

    Google Scholar 

  • Singh A, Bhowmik TP, Chaudhary BS (1990) Effect of soil amendment with inorganic and organic sources of nitrogenous manures on the incidence of root rot and seed yield in sesamum. Indian Phytopathol 43:442–443

    Google Scholar 

  • Singh BP, Saikia R, Yadav M, Singh R, Chauhan VS, Arora DK (2006) Molecular characterization of Fusarium oxysporum f. sp. ciceri causing wilt of chickpea. Afr J Biotechnol 5:497–502

    CAS  Google Scholar 

  • Sobti AK, Bansal RK (1988) Cultural variability among three isolates of R. bataticola from groundnut. Indian Phytopathol 41:149–151

    Google Scholar 

  • Spencer JFT, Spencer DM (1997) Ecology: where yeasts are. In: Spencer JFT, Spencer DM (eds) Yeasts in natural and artificial habitats. Springer-Verlag, Germany, pp 48–58

    Google Scholar 

  • Srivastava AK, Arora DK (1997) Evaluation of a polyclonal antibody immunoassay for detection and quantification of Macrophomina phaseolina. Plant Pathol 46:785–794

    Article  Google Scholar 

  • Srivastava AK, Singh RB (1990) Effect of organic amendment on interaction of Macrophomina phaseolina and Melpidogyne incognita on fresh bean (Phaseolus vulgaris). New Agric 1:99–100

    Google Scholar 

  • Stultz JR, Snoeyenbos-West O, Methe B, Lovley DR, Chandler DP (2001) Application of the 5′fluorogenic exonuclease assay (TaqMan) for quantitative ribosomal DNA and rRNA analysis in sediments. Appl Environ Microbiol 67:2781–2789

    Article  Google Scholar 

  • Su G, Suh SO, Schneider RW, Russin JS (2001) Host specialization in the charcoal rot fungus, Macrophomina phaseolina. Phytopathology 91:120–126

    Article  PubMed  CAS  Google Scholar 

  • Suárez ZH, Rosales LC, Rondón A, González MS (1998) Histological alterations on Psidium guajava roots caused by the nematode Meloidogyne incognita race 1 and the fungi Macrophomina phaseolina and Fusarium oxysporum. Fitopatología Venezolana 11:44–47

    Google Scholar 

  • Sutton BC (1980) The coelomycetes: fungi imperfecti with pycnidia, acervuli and stromata. Commonw Mycol Inst Assoc Appl Biol, Kew, England, p 696

    Google Scholar 

  • Thakurji (1979) Chemical control of Macrophomina phaseolina root rot of jute. Indian Phytopathol 32:280–281

    Google Scholar 

  • Upadhayay RK, Arora DK, Dubey OP (2002) Indian Pest Management, vol II. Aditya Books Pvt. Ltd., New Delhi, India, pp 131–147

    Google Scholar 

  • Vandemark G, Martnez O, Pecina V, Alvardo M de J (2000) Assessment of genetic relationships among isolates of Macrophomina phaseolina using simplified AFLP technique and two different methods of analysis. Mycologia 92:656–664

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for Phylogenetics. In: Innis MA, Gelland DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Widjojoatmodjo MN, Borst A, Schukkink RAF, Box ATA, Tacken NMM, Van Gemen B, Verhoef J, Top B, Fluit AC (1999) Nucleic acid sequence-based amplification (NASBA) detection of medically important Candida species. J Microbiol Methods 38:81–90

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The work is supported by a Network Project, sponsored by Indian Council of Agricultural Research (ICAR), Government of India, New Delhi. The authors are thankful to the funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bandamaravuri Kishore Babu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Babu, B.K., Saikia, R., Arora, D.K. (2010). Molecular Characterization and Diagnosis of Macrophomina phaseolina: A Charcoal Rot Fungus. In: Gherbawy, Y., Voigt, K. (eds) Molecular Identification of Fungi. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05042-8_9

Download citation

Publish with us

Policies and ethics