Skip to main content

Applications of Molecular Markers and DNA Sequences in Identifying Fungal Pathogens of Cool Season Grain Legumes

  • Chapter
  • First Online:

Abstract

Molecular techniques have now been widely applied in many disciplines of biological sciences including fungal identification in microbial ecology and in plant pathology. In plant pathology, it is now common to use molecular techniques to identify and study plant pathogens of many agronomical and horticultural crops including cool season grain legume crops. In this chapter, we present two examples in which molecular techniques have been applied in order to identify and investigate multiple fungal pathogens causing two important diseases of chickpea and lentil. In each case, molecular techniques improved over traditional morphological identification and allowed timely and unambiguous identification of fungal pathogens. The first example involves identification of two Sclerotinia species (S. sclerotiorum and S. trifoliorum) causing stem rot of chickpea. Traditional method requires induction of carpogenic germination and observation of dimorphic ascospores in S. trifoliorum, which takes up to eight weeks. Taking advantage of the group I introns present in the nuclear small subunit rDNA of S. trifoliorum but absent in the same DNA region of S. sclerotiorum, a simple PCR amplification of the targeted DNA region allowed timely and reliable differentiation and identification of the species. The second example is of powdery mildew of lentil. Identification of powdery mildew fungi requires observing the teleomorphic (sexual) state of the pathogens, but this is not always available. In studying lentil powdery mildew in the US Pacific Northwest, we found that the powdery mildew on lentil does not fit previously reported species (Erysiphe pisi and E. diffusa). Further investigation confirmed that the lentil powdery mildew in the US is E. trifolii, a new pathogen of lentil. This discovery was mainly based on the rDNA ITS sequences and further confirmed by morphological and pathogenicity studies. These two examples demonstrate the important role of modern molecular techniques in solving practical agricultural problems. The ITS and adjacent rDNA could be ideal target regions for developing DNA barcodes for identifying these and related fungal species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agrawal SC, Prasad KVV (1997) Diseases of lentil. Science Publishers, Enfield, NH, pp 59–61

    Google Scholar 

  • Amano K (1986) Host range and geographical distribution of the powdery mildew fungi. Japan Scientific Societies Press, Tokyo, p 543

    Google Scholar 

  • Attanayake RN, Glawe DA, Dugan FM, Chen W (2009) Erysiphe trifolii causing powdery mildew of lentil (Lens culinaris). Plant Dis 93:797–803

    Article  Google Scholar 

  • Banniza S, Parmelee JA, Morrall RAA, Tullu A, Beauchamp CJ (2004) First record of powdery mildew on lentil in Canada. Can Plant Dis Surv 84:102–103

    Google Scholar 

  • Beniwal SPS, Bayaa B, Weigand S, Makkouk KH, Saxena MC (1993) Field guide to lentil diseases and insect pests. International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria

    Google Scholar 

  • Braun U (1987) A monograph of the Erysiphales (Powdery Mildews). Beiheftezur Nova Hedwigia 89:1–700

    Google Scholar 

  • Braun U (1995) The powdery mildews (Erysiphales) of Europe. Gustav Ficher Verlag, New York, pp 1–307

    Google Scholar 

  • Braun U, Takamatsu S (2000) Phylogeny of Erysiphe, Microsphaera, Uncinula (Erysipheae) and Cystotheca, Podosphaera, Sphaerotheca (Cystotheceae) inferred from rDNA ITS sequences – some taxonomic consequences. Schlechtendalia 4:1–33

    Google Scholar 

  • Bretag TW, Mebalds MI (1987) Pathogenicity of fungi isolated from Cicer arietinum (chickpea) grown in northwestern Victoria. Aust J Exp Agric 27:141–148

    Article  Google Scholar 

  • Chen W, Gray LE, Kurle JE, Grau CR (1999) Specific detection of Phialophora gregata and Plectosporium tabacinum in infected soybean plants. Mol Ecol 8:871–877

    Article  CAS  Google Scholar 

  • Cother EJ (1977) Isolation of important fungi from seeds of Cicer arietinum. Seed Sci Technol 5:593–597

    Google Scholar 

  • Cunnington JH, Takamatsu S, Lawrie AC, Pascoe IG (2003) Molecular identification of anamorphic powdery mildews (Erysiphales). Australas Plant Pathol 32:421–428

    Article  CAS  Google Scholar 

  • Druzhinina I, Kopchinskiy AG, Komon M, Bissett J, Szakacs G, Kubicek CP (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42:813–828

    Article  PubMed  CAS  Google Scholar 

  • Epinat C, Pitrat M, Bertrand F (1993) Genetic analysis of resistance of five melon lines to powdery mildews. Euphytica 65:135–144

    Article  Google Scholar 

  • Glawe DA (2008) The powdery mildews: a review of the world’s most familiar (yet poorly known) plant pathogens. Annu Rev Phytopathol 46:27–51

    Article  PubMed  CAS  Google Scholar 

  • Glawe DA, du Toit LJ, Pelter GQ (2004) First report of powdery mildew on potato caused by Leveillula taurica in North America Online. Plant Health Prog. doi:10.1094/PHP-2004-1214-01-HN

    Google Scholar 

  • Henry T, Iwen PC, Hinrichs SH (2000) Identification of Aspergillus species using internal transcribed spacer regions 1 and 2. J Clin Microb 38(4):1510–1515

    CAS  Google Scholar 

  • Holst-Jensen A, Vaage M, Schumacher T, Johansen S (1999) Structural characteristics and possible horizontal transfer of group I introns between closely related plant pathogenic fungi. Mol Biol Evol 16(1):114–126

    Article  PubMed  CAS  Google Scholar 

  • Kohn LM (1979) Delimitation of the economically important plant pathogenic Sclerotinia species. Phytopathology 69:881–886

    Article  Google Scholar 

  • Lieckfeldt E, Seifert KA (2000) An evaluation of the use of ITS sequences in the taxonomy of the Hypocreales. Stud Mycol 45:35–44

    Google Scholar 

  • Matsuda Y, Sameshima T, Moriura N, Inoue K, Nonomura T, Kakutani K, Nishimura H, Kusakari S, Takamatsu S, Toyoda H (2005) Identification of individual powdery mildew fungi infecting leaves and direct detection of gene expression by single conidium polymerase chain reaction. Phytopathology 95:1137–1143

    Article  PubMed  CAS  Google Scholar 

  • Mmbaga MT, Klopfenstein NB, Kim MS, Mmbaga NC (2004) PCR-based identification of Erysiphe pulchra and Phyllactinia guttata from Cornus florida using ITS-specific primers. For Pathol 34:321–328

    Article  Google Scholar 

  • Njambere EN, Chen W, Frate C, Wu BM, Temple S, Muehlbauer FJ (2008) Stem and crown rot of chickpea in California caused by Sclerotinia trifoliorum. Plant Dis 92:917–922

    Article  CAS  Google Scholar 

  • Okamoto J, Limkaisang S, Nojima H, Takamatsu S (2002) Powdery mildew of prairie gentian: characteristics, molecular phylogeny and pathogenicity. J Gen Plant Pathol 68:200–207

    Article  CAS  Google Scholar 

  • Power KS, Steadman JR, Higgins BS, Powers TO (2001) Intraspecific variation within North American Sclerotinia trifoliorum isolates characterized by nuclear small subunit rDNA introns. Proceedings of the XI International Sclerotinia Workshop, Central Science Laboratory, New York, UK

    Google Scholar 

  • Rehnstrom AL, Free SJ (1993) Methods for the mating of Sclerotinia trifolorium. Exp Mycol 17:236–239

    Article  Google Scholar 

  • Sanchez-Ballesteros J, Gonzalez V, Salazar O, Acero J, Portal MA, Julian M, Rubio V, Bills GF, Polishook JD, Platas G, Mochales S, Pelaez F (2000) Phylogenetic study of Hypoxylon and related genera based on ribosomal ITS sequences. Mycologia 92(5):964–977

    Article  CAS  Google Scholar 

  • Schneider JHM, Salazar O, Rubio V, Keijer J (1997) Identification of Rhizoctonia solani associated with field grown tulips using ITS rDNA polymorphism and pectic zymograms. Eur J Plant Pathol 103:607–22

    Article  CAS  Google Scholar 

  • Takamatsu S, Hirata T, Sato Y, Nomura Y, Sato Y (1999) Phylogenetic relationships of Microsphaera and Erysiphe section Erysiphe (powdery mildews) inferred from the rDNA ITS sequences. Mycoscience 40:259–268

    Article  CAS  Google Scholar 

  • Takamatsu S, Shin HD, Paksiri U, Limkaisang S, Taguchi Y, Nguyen T-B, Sato Y (2002) Two Erysiphe species associated with recent outbreak of soybean powdery mildew: results of molecular phylogenetic analysis based on nuclear rDNA sequences. Mycoscience 43:333–341

    Article  CAS  Google Scholar 

  • Uhm JY, Fujii J (1983a) Ascospore dimorphism in Sclerotinia trifoliorum and cultural characters of strains from different-sized spores. Phytopathology 73:565–569

    Article  Google Scholar 

  • Uhm JY, Fujii J (1983b) Heterothallism and mating type mutation in Sclerotinia trifoliorum. Phytopathology 73:569–572

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Njambere, E.N., Attanayake, R.N., Chen, W. (2010). Applications of Molecular Markers and DNA Sequences in Identifying Fungal Pathogens of Cool Season Grain Legumes. In: Gherbawy, Y., Voigt, K. (eds) Molecular Identification of Fungi. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05042-8_4

Download citation

Publish with us

Policies and ethics