Advertisement

Nanoporous Template Synthesized Nanotubes for Bio-related Applications

  • Yue Cui
  • Qiang He
  • Junbai Li
Chapter
  • 1.1k Downloads
Part of the Advanced Topics in Science and Technology in China book series (ATSTC)

Abstract

The porous template synthesis method has attracted significant interest as a versatile approach to prepare tubular nanomaterials with tailored properties. The process involves deposition or synthesis of various materials such as polymers, nanoparticles, proteins, dyes, and organic or inorganic small molecules within the porous templates, which are subsequently removed to yield free-standing nanotubes. At the same time, this approach permits the formation of composite nanotubes with the engineering features including size, shape, composition, and function. In this chapter, we summarize the synthesis and properties of various composite nanotubes based on template method combining with layer-by-layer assembly, sol—gel chemistry and polymerization. These nanotubes possess potential applications in biomedical fields such as bioseparation, biocatalysis, biosensor, and drug delivery.

Keywords

Atom Transfer Radical Polymerization Atom Transfer Radical Polymerization Lower Critical Solution Temperature Multilayer Film Composite Nanotubes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aegerter MA, Mehrota RC, Oehme I, Reisfeld R, Sakka S, Wolfbeis O, Jorgensen CK (1996) Optical and electronic phenomena in sol-gel glasses and modern applications. Berlin: Springer-Verlag: 85Google Scholar
  2. Ai S, He Q, Tao C, Zheng S, Li J (2005) Conductive polypyrrole and poly(allylamine hydrochloride) nanotubes fabricated with layer-by-layer assembly. Macromol Rapid Comm 20:1965–1969Google Scholar
  3. Ai S, Lu G, He Q, Li J (2003) Highly flexible polyelectrolyte nanotubes. J Am Chem Soc 125:11140–11141Google Scholar
  4. An Z, Lu G, Möhwald H, Li J (2004) Self-assembly of human serum albumin (HSA) and L-α dimyristoylphosphatidic acid (DMPA) microcapsules for controlled drug release. Chem Eur J 10:5848–5852Google Scholar
  5. An Z, Tao C, Lu G, Möhwald H, Zheng S, Cui Y, Li J (2005) Fabrication and characterization of human serum albumin and L-α-dimyristoylphosphatidic acid microcapsules based on template technique. Chem Mater 17:2514–2519Google Scholar
  6. Ariga K, Nakanishi T, Hill JP (2007) Self-assembled microstructures of functional molecules. Curr Opin Colloid Interface 12:106–120Google Scholar
  7. Baughman RH, Zakhidov AA, Heer WA (2002) Carbon nanotubes: the route toward applications. Science 297:787–792Google Scholar
  8. Bertrand P, Jonas A, Laschewsky A, Legras R (2000) Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol Rapid Commun 21:319–348Google Scholar
  9. Bischoff BL, Anderson MA (1995) Peptization process in the sol-gel preparation of porous anatase (TiO2). Chem Mater 7:1772–1778Google Scholar
  10. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013Google Scholar
  11. Brumlik CJ, Martin CR (1991) Template synthesis of metal microtubules. J Am Chem Soc 113:3174–3175Google Scholar
  12. Brumlik CJ, Menon VP, Martin CR (1994) Template synthesis of metal microtubule ensembles utilizing chemical, electrochemical, and vacuum deposition techniques. J Mater Res 9:1174–1183Google Scholar
  13. Cai Z, Lei J, Liang W, Martin CR (1991) Molecular and supermolecular origins of enhanced electronic conductivity in template-synthesized polyheterocyclic fibrils. 1. Supermolecular effects. Chem Mater 3:960–967Google Scholar
  14. Cai Z, Martin CR (1989) Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities. J Am Chem Soc 111:4138–4139Google Scholar
  15. Caruso F (2000) Hollow capsule processing through colloidal templating and self-assembly. Chem Eur J 6:413–419Google Scholar
  16. Chen C, Liu Y, Wu C, Yeh C, Su M, Wu Y (2005) Preparation of fluorescent silica nanotubes and their application in gene delivery. Adv Mater 17:404–407Google Scholar
  17. Chen J, Yoshida M, Maekawa Y, Tsubokawa N (2001) Temperature-switchable vapor sensor materials based on N-isopropylacrylamide and calcium chloride. Polymer 42:9361–9365Google Scholar
  18. Cui Y, Tao C, Tian Y, He Q, Li J (2006) Synthesis of PNIPAM-co-MBAA copolymer nanotubes with composite control. Langmuir 22:8205–8208Google Scholar
  19. Cui Y, Tao C, Zheng S, He Q, Ai S, Li J (2005) Synthesis of thermosensitive PNIPAM-co-MBAA nanotubes by atom transfer radical polymerization within a porous membrane. Macromol Rapid Commun 26:1552–1556Google Scholar
  20. Cunliffe D, Smart CA, Tsibouklis J, Young S, Alexander C, Vulfson EN (2000) Bacterial adsorption to thermoresponsive polymer surfaces. Biotechnol Lett 22:141–145Google Scholar
  21. Decher G (1997) Fuzzy nanoassemblies: oward layered polymeric multicomposites. Science 277:1232–1237Google Scholar
  22. Djuristic AB, Fritz T, Leo K (2000) Modeling the optical constants of organic thin films: application to 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA). Opt Commun 183:123–132Google Scholar
  23. Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed 37:2202–2205Google Scholar
  24. Duan L, He Q, Wang K, Yan X, Cui Y, Möhwald H, Li J (2007a) Adenosine triphosphate biosynthesis catalyzed by FoF1 atp synthase assembled in polymer microcapsules. Angew Chem Int Ed 46:6996–7000Google Scholar
  25. Duan L, He Q, Yan X, Cui Y, Wang K, Li J (2007b) Hemoglobin protein hollow shells fabricated through covalent layer-by-layer technique. Biochem Biophys Res Commun 354:357–362Google Scholar
  26. Feng C, Zhong X, Steinhart M, Caminade AM, Majoral J, Knoll W (2007) Graded-bandgap quantum-dot-modified nanotubes: a sensitive biosensor for enhanced detection of DNA hybridization. Adv Mater 19:1933–1936Google Scholar
  27. Feng C, Zhong X, Steinhart M, Caminade AM, Majoral J, Knoll W (2008) Functional quantum-dot/dendrimer nanotubes for sensitive detection of DNA hybridization. Small 4:566–571Google Scholar
  28. Ford WE, Kamat PV (1987) Photochemistry of 3,4,9,10-perylenetetracarboxylic dianhydride dyes.3. Singlet and triplet excited-state properties of the bis(2,5-di-tert-butylphenyl)imide derivative. J Phys Chem 91:6373–6380Google Scholar
  29. Fu Q, Rao GVR, Basame SB, Keller DJ, Artyushkova K, Fulghum JE, Lopez GP (2004) Reversible control of free energy and topography of nanostructured surfaces. J Am Chem Soc 126:8904–8905Google Scholar
  30. Gao Y, Banin U (1999) Synthesis and characterization of InAs/InP and InAs/CdSe core/shell nanocrystals. Angew Chem Int Ed 38:3692–3694Google Scholar
  31. Gilcreest VP, Carroll WM, Rochev YA, Blute I, Dawson KA, Gorelov AV (2004) Thermoresponsive poly(N-isopropylacrylamide) copolymers: contact angles and surface energies of polymer films. Langmuir 20:10138–10145Google Scholar
  32. Gooding JJ, Wibowo R, Liu J, Yang W, Losic D, Orbons S, Mearns F, Shapter JG, Hibbert DB (2003) Protein electrochemistry using aligned carbon nanotube arrays. J Am Chem Soc 125:9006–9007Google Scholar
  33. Grawford GP, Steele LM, Ondris-Crawford R, Iannacchione GS, Yeager CJ, Doane JW, Finotello D (1992) Characterization of the cylindrical cavities of anopore and nuclepore membranes. J Chem Phys 96:7788–7796Google Scholar
  34. Hammond PT (2004) Form and function in multilayer assembly: new applications at the nanoscale. Adv Mater 16:1271–1293Google Scholar
  35. Harmon ME, Kuckling D, Frank CW (2003) Photo-cross-linkable PNIPAAm copolymers. 4. Effects of copolymerization and cross-linking on the volume-phase transition in constrained hydrogel layers. Langmuir 19:10947–10956Google Scholar
  36. He Q, Cui Y, Ai S, Tian Y, Li J (2009) Self-assembly composite nanotubes and their applications. Curr Opin Colliod In 14:115–125Google Scholar
  37. He Q, Song W, Möhwald H, Li J (2008a) Hydrothermal-induced structure transformation of polyelectrolyte multilayers: from nanotubes to capsules. Langmuir 24: 5508–5513Google Scholar
  38. He Q, Tian Y, Cui Y, Möhwald H, Li J (2008b) Layer-by-layer assembly of magnetic polypeptide nanotubes as a DNA carrier. J Mater Chem 18:748–754Google Scholar
  39. He Q, Zhang Y, Lu G, Miller R, Möhwald H, Li J (2008c) Dynamic adsorption and characterization of phospholipid and mixed phospholipid/protein layers at liquid/liquid interfaces. Adv Colloid Interface Sci 140:67–76Google Scholar
  40. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90:33–72Google Scholar
  41. Hillebrenner H, Buyukserin F, Stewart JD, Martin CR (2006) Template synthesized nanotubes for biomedical delivery applications. Nanomedicine 1:39–50Google Scholar
  42. Hou S, Wang J, Martin CR (2005a) Template-synthesized DNA nanotubes. J Am Chem Soc 127:8586–8587Google Scholar
  43. Hou S, Wang J, Martin CR (2005b) Template-synthesized protein nanotubes. Nano Lett 5:231–234Google Scholar
  44. Hulteen JC, Martin CR (1997) A general template-based method for the preparation of nanomaterials. J Mater Chem 7:1075–1087Google Scholar
  45. Ichinose I, Senzu H, Kunitake T (1997) A surface sol—gel process of TiO2 and other metal oxide films with molecular precision. Chem Mater 9:1296–1298Google Scholar
  46. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58Google Scholar
  47. Jiang Y, Yan D, Gao X, Han C, Jin X, Li L (2003) Lamellar branching of poly(bisphenol A-co-decane) spherulites at different temperatures studied by high-temperature AFM. Macromolecules 36:3652–3655Google Scholar
  48. Jirage KB, Hulteen JC, Martin CR (1997) Nanotubule-based molecular-filtration membranes. Science 278:655–658Google Scholar
  49. Johnston APR, Mitomo H, Read ES, Caruso F (2006) Compositional and structural engineering of DNA multilayer films. Langmuir 22:3251–3258Google Scholar
  50. Johnston APR, Read ES, Caruso F (2005) DNA multilayer films on planar and colloidal supports: sequential assembly of like-charged polyelectrolytes. Nano Lett 5:953–956Google Scholar
  51. Kim DH, Karan P, Göring P, Leclaire J, Caminade AM, Majoral JP, Gösele U, Steinhart M, Knoll W (2005) Formation of dendrimer nanotubes by layer-by-layer deposition. Small 1:99–102Google Scholar
  52. Kohli P, Blanchard GJ (2000) Applying polymer chemistry to interfaces: layer-by-layer and spontaneous growth of covalently bound multilayers. Langmuir 16:4655–4661Google Scholar
  53. Kong H, Li W, Gao C, Yan D, Jin Y, Walton DRM, Kroto HW (2004) Poly(N-isopropylacrylamide)-coated carbon nanotubes: temperature-sensitive molecular nano-hybrids in water. Macromolecules 37:6683–6686Google Scholar
  54. Kost J, Langer R (2001) Responsive polymeric delivery systems. Adv Drug Delivery Res 46:125–148Google Scholar
  55. Kovtyukhova NI, Buzaneva EV, Waraksa CC, Martin B, Mallouk TE (2000) Surface sol—gel synthesis of ultrathin semiconductor films. Chem Mater 12:383–389Google Scholar
  56. Kovtyukhova NI, Mallouk TE, Mayer TS (2003) Template surface sol—gel synthesis of SiO2 nanotubes and SiO2-insulated metal nanowires. Adv Mater 15:780–785Google Scholar
  57. Kuckling D, Adler HJP, Arndt KF, Ling L, Habicher WD (2000) Temperature and pH dependent solubility of novel poly(N-isopropylacrylamide) copolymers. Marcomol Chem Phys 201:273–280Google Scholar
  58. Lakshmi BB, Dorhout PK, Martin CR (1997a) Sol-gel template synthesis of semiconductor nanostructures. Chem Mater 9:857–862Google Scholar
  59. Lakshmi BB, Patrissi CJ, Martin CR (1997b) Sol—gel template synthesis of semiconductor oxide micro-and nanostructures. Chem Mater 9:2544–2550Google Scholar
  60. Lee AB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ (2004) Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5:877–882Google Scholar
  61. Lee DY, Nolte AJ, Kunz AL, Rubner MF, Cohen RE (2006) pH-Induced hysteretic gating of track-etched polycarbonate membranes: swelling/deswelling behavior of polyelectrolyte multilayers in confined geometry. J Am Chem Soc 128:8521–8529Google Scholar
  62. Lee SB, Martin CR (2001) Controlling the transport properties of gold nanotubule membranes using chemisorbed thiols. Chem Mater 13:3236–3244Google Scholar
  63. Lee SB, Mitchell DT, Trofin L, Nevanen TK, Soederlund H, Martin CR (2002) Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science 296:2198–2200Google Scholar
  64. Lei J, Menon VP, Martin CR (1992) Chemical preparation of conductive polypyrrole-polytetrafluoroethene composites. Polym Adv Technol 4:124–132Google Scholar
  65. Li J, Möhwald H An Z, Lu G (2005) Molecular assembly of biomimetic microcapsules. Soft Matter 1:259–264Google Scholar
  66. Li J, Zhang Y, Yan L (2001) Multilayer formation on a curved drop surface. Angew Chem Int Ed 40:891–894Google Scholar
  67. Liang W, Martin CR (1990) Template-synthesized polyacetylene fibrils show enhanced supermolecular order. J Am Chem Soc 112:9666–9668Google Scholar
  68. Liang ZJ, Susha AS, Yu AM, Caruso F (2003) Nanotubes prepared by layer-by-layer coating of porous membrane template. Adv Mater 15:1849–1853Google Scholar
  69. Livage J, Henry M, Sanchez C (1988) Sol—gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341Google Scholar
  70. Lu G, Ai S, Li J (2005) Layer-by-layer assembly of human serum albumin and phospholipid nanotubes based on a template. Langmuir 21:1679–1682Google Scholar
  71. Lu G, Komatsu T, Tsuchida E (2007) Artificial hemoprotein nanotubes. Chem Commun 28:2980–2982Google Scholar
  72. Lynn DM (2007) Peeling back the layers: controlled erosion and triggered disassembly of multilayered polyelectrolyte thin films. Adv Mater 19:4118–4130Google Scholar
  73. Martin CR (1991) Template synthesis of polymeric and metal microtubules. Adv Mater 3:457–459Google Scholar
  74. Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266: 1961–1966Google Scholar
  75. Martin CR, Parthasarathy R, Menon V (1993) Template synthesis of electronically conductive polymers: a new route for achieving higher electronic conductivities. Synth Met 55:1165–1170Google Scholar
  76. Mitchell DT, Lee SB, Trofin L, Li N, Nevanen TK, Söderlund H, Martin CR (2002) Smart nanotubes for bioseparations and biocatalysis. J Am Chem Soc 124:11864–11865Google Scholar
  77. Nishizawa M, Menon VP, Martin CR (1995) Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 268:700–702Google Scholar
  78. Parthasarathy R, Martin CR (1994a) Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization. Nature 369:298–301Google Scholar
  79. Parthasarathy R, Martin CR (1994b) Template-synthesized polyaniline microtubules. Chem Mater 6:1627–1632Google Scholar
  80. Patten TE, Maytjaszewski K (1998) Atom transfer radical polymerization and the synthesis of polymeric materials. Adv Mater 12:901–915Google Scholar
  81. Peyratout CS, Daehne L (2004) Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers. Angew Chem Int Ed 43:3762–3783Google Scholar
  82. Quinn JF, Caruso F (2004) Facile tailoring of film morphology and release properties using layer-by-layer assembly of thermoresponsive materials. Langmuir 20:20–22Google Scholar
  83. Quinn JF, Johnston APR, Such GK, Zelikin AN, Caruso F (2007) Next generation, sequentially assembled ultrathin films: beyond electrostatics. Chem Soc Rev 36:707–718Google Scholar
  84. Reber N, Kuchel A, Spohr R, Wolf A, Yoshida M (2001) Transport properties of thermoresponsive ion track membranes. J Membr Sci 193:49–58Google Scholar
  85. Serizawa T, Nanameki K, Yamamoto K, Akashi M (2002) Thermoresponsive ultrathin hydrogels prepared by sequential chemical reactions. Macromolecules 35:2184–2189Google Scholar
  86. Shi D, Lian J, Wang W, Liu G, He P, Dong Z, Wang L, Ewing RC (2006) Luminescent carbon nanotubes by surface functionalization. Adv Mater 18:189–193Google Scholar
  87. Steinhart M (2008) Supramolecular organization of polymeric materials in nanoporous hard templates. Adv Polym Sci 220:123–187Google Scholar
  88. Steinhart M, Wehrspohn RB, Gösele U, Wendorff JH (2004) Nanotubes by template wetting: a modular assembly system. Angew Chem Int Ed 43: 1334–1344Google Scholar
  89. Steinhart M, Wendorff JH, Greiner A, Wehrspohn RB, Nielsch K, Schilling J, Choi J, Gösele U (2002) Polymer nanotubes by wetting of ordered porous templates. Science 296:1997Google Scholar
  90. Stockto WB, Rubner MF (1997) Molecular-level processing of conjugated polymers. 4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules 30: 2717–2725Google Scholar
  91. Such GK, Quinn JF, Quinn A, Tjipto E, Caruso F (2006) Assembly of ultrathin polymer multilayer films by click chemistry. J Am Chem Soc 128:9318–9319Google Scholar
  92. Sukhishvili SA, Granick S (2000) Layered, erasable, ultrathin polymer films. J Am Chem Soc 122:9550–9551Google Scholar
  93. Sukhishvili SA, Granick S (2002) Layered, erasable polymer multilayers formed by hydrogen-bonded sequential self-assembly. Macromolecules 35:301–310Google Scholar
  94. Sun T, Wang G, Feng L, Liu B, Ma Y, Liang L, Zhu D (2004) Reversible switching between superhydrophilicity and superhydrophobicity. Angew Chem Int Ed 43:357–360Google Scholar
  95. Tian Y, He Q, Cui Y, Li J (2006a) Fabrication of protein nanotubes based on layer-by-layer assembly. Biomacromolecules 7:2539–2542Google Scholar
  96. Tian Y, He Q, Cui Y, Tao C, Li J (2006b) Assembly of nanotubes of poly(4-vinylpyridine) and poly(acrylic acid) through hydrogen bonding. Chem Eur J 12:4808–4812Google Scholar
  97. Tian Y, He Q, Li J (2006c) Fabrication of fluorescent nanotubes based on layer-by-layer assembly via covalent bond. Langmuir 22:360–362Google Scholar
  98. Tian Y, He Q, Tao C, Cui Y, Ai S, Li J (2006d) Fabrication of polyethyleneimine and poly(styrene-alt-maleic anhydride) nanotubes through covalent bond. J Nanosci Nanotechnol 6:2072–2076Google Scholar
  99. Van Dyke LS, Martin CR (1990) Electrochemical investigations of electronically conductive polymers. 4. Controlling the supermolecular structure allows charge transport rates to be enhanced. Langmuir 6:1118–1123Google Scholar
  100. Wang H, Zhou W, Yin X, Zhuang Z, Yang H, Wang X (2006) Template synthesized molecularly imprinted polymer nanotube membranes for chemical separations. J Am Chem Soc 128: 15954–15955Google Scholar
  101. Wang K, He Q, Cui Y, Yan X, Qi W, Li J (2007) Encapsulated photosensitive drugs by biodegradable microcapsules to incapacitate cancer cells. J Mater Chem 17:4018–4021Google Scholar
  102. Wang L, Wang Z, Zhang X, Shen J, Chi L, Fuchs H (1997) A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acry1ic acid) based on hydrogen bonding. Macromol Rapid Commun 18:509–514Google Scholar
  103. Wang Y, Angelatos AS, Caruso F (2008) Template synthesis of nanostructured materials via layer-by-layer assembly. Chem Mater 20:848–858Google Scholar
  104. Wang Z, Chumanov G (2003) WO3 sol—gel modified Ag nanoparticles arrays for electrochemical modulation of surface plasmon resonance. Adv Mater 15:1285–1289Google Scholar
  105. Williams KA, Veenhuizen PT, Torre BG, Eritja R, Dekker C (2002) Nanotechnology: carbon nanotubes with DNA recognition. Nature 420:761Google Scholar
  106. Willner I, Katz E (2000) Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew Chem Int Ed 39:1180–1218Google Scholar
  107. Willner I, Patolsky F, Wasserman J (2001) Photoelectrochemistry with controlled DNA-cross-linked CdS nanoparticle arrays. Angew Chem Int Ed 40:1861–1864Google Scholar
  108. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975Google Scholar
  109. Yang S, Rubner MF (2002) Micropatterning of polymer thin films with pH-sensitive and cross-linkable hydrogen-bonded polyelectrolyte multilayers. J Am Chem Soc 124: 2100–2101Google Scholar
  110. Yang Y, He Q, Duan L, Cui Y, Li J (2007) Assembled alginate/chitosan nanotubes for biological application. Biomaterials 28: 3083–3090Google Scholar
  111. Yu A, Liang Z, Caruso F (2005) Enzyme multilayer-modified porous membranes as biocatalysts. Chem Mater 17:171–175Google Scholar
  112. Zelenski CM, Dorhout PK (1998) Template synthesis of near-monodisperse microscale nanofibers and nanotubules of MoS2. J Am Chem Soc 120:734–742Google Scholar
  113. Zelikin AN, Li Q, Caruso F (2006) Degradable polyelectrolyte capsules filled with oligonucleotide sequences. Angew Chem Int Ed 45:7743–7745Google Scholar
  114. Zheng S, Tao C, He Q, Zhu H, Li J (2004) Self-assembly and characterization of polypyrrole and polyallylamine multilayer films and hollow shells. Chem Mater 16: 3677–3681Google Scholar
  115. Zhi L, Wu J, Li J, Stepputat M, Kolb U, Muellen K (2005) Diels-alder reactions of tetraphenylcyclopentadienones in nanochannels: fabrication of nanotubes from hyperbranched polyphenylenes. Adv Mater 17:1492–1496Google Scholar
  116. Zhou Y, Shimizu T (2008) Lipid nanotubes: a unique template to create diverse one-dimensional nanostructures. Chem Mater 20:625–633Google Scholar

Copyright information

© Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yue Cui
    • 2
  • Qiang He
    • 2
  • Junbai Li
    • 1
    • 2
  1. 1.National Center for Nanoscicence and TechnologyBeijingChina
  2. 2.Beijing National Laboratory for Molecular Sciences (BNLMS), International Joint LabInstitute of Chemistry, Chinese Academy of SciencesBeijingChina

Personalised recommendations