Advertisement

Inorganic-organic Hybrid Materials Based on Nano-polyoxometalates and Surfactants

  • Peiqin Tang
  • Jingcheng HaoEmail author
Chapter
Part of the Advanced Topics in Science and Technology in China book series (ATSTC)

Abstract

A series of nano-scale polyoxometalates (POMs) with beautiful topologies have been successfully synthesized by destroying the hydration shell of metal oxides. Their magnetic, electronic, and photoluminescent properties and valuable applications in catalysis, medicine, and material science are discussed. By interaction with oppositely charged surfactants, an interesting phase transfer of POMs occurs from aqueous solution to chloroform solution by forming hydrophobic surfactant-encapsulated clusters (HSECs), and then to aqueous solution with more surfactants. Moreover, inorganic-organic hybrids composed of polyoxometalates and surfactants or polyelectrolytes are fabricated by layer-by-layer (LbL) and Langmuir-Blodgett (LB) techniques. A simple solvent-evaporation method is also delicately carried out, and consequently, ordered honeycomb films are self-assembled at air/water interfaces without any extra moist airflow. It is speculated that the condensed water micro-droplets induced by the quick evaporation of solvents play an important role as template for the formation of pores. And many types of modulation are being investigated to construct thin films with different morphologies. The incorporation of functional polyoxometalates in thin films will bridge polyoxometalate chemistry and material chemistry.

Keywords

Transmission Electron Microscopy Image Hybrid Film Multilayer Film Polarize Optical Microscopy Tetradecyltrimethylammonium Bromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballardini R, Mulazzani QG, Venturi M, Bolletta F, Balzani V (1984) Photophysical characterization of the decatungstoeuropate (9-) anion. Inorg Chem 23:300–305CrossRefGoogle Scholar
  2. Bazzan G, Smith W, Francesconi LC, Drain CM (2008) Electrostatic self-organization of robust porphyrin-polyoxometalate films. Langmuir 24:3244–3249CrossRefGoogle Scholar
  3. Block MJ (1956) Surface tension as the cause of Benard cells and surface deformation in a liquid film. Nature 178:650–651CrossRefGoogle Scholar
  4. Bolognesi A, Mercogliano C, Yunus S, Civardi M, Comoretto D, Turturro A (2005) Self-organization of polystyrenes into ordered microstructured films and their replication by soft lithography. Langmuir 21:3480–3485CrossRefGoogle Scholar
  5. Bösing M, Nöh A, Loose I, Krebs B (1998) Highly efficient catalysts in directed oxygen-transfer processes: Synthesis structures of novel manganese-containing heteropolyanions and applications in regioselective epoxidation of dienes with hydrogen peroxide. J Am Chem Soc 120:7252–7259CrossRefGoogle Scholar
  6. Brown GM. Noe-Spirlet MR. Busing WR. Levy HA (1977) Dodecatungstophosphoric acid hexahydrate (H5O+ 2)3(PW12O3- 40): the true structure of Keggin's ‘pentahydrate’ from single-crystal X-ray and neutron diffraction data. Acta Crystallogr Sect B: Struct Sci 33:1038–1046CrossRefGoogle Scholar
  7. Bu W, Li H, Sun H, Yin S, Wu L (2005) Polyoxometalate-based vesicle and its honeycomb architectures on solid surfaces. J Am Chem Soc 127:8016–8017CrossRefGoogle Scholar
  8. Bu W, Wu L, Hou X, Fan H, Hu C, Zhang X (2002) Investigation on solvent casting films of surfactant-encapsulated clusters. J Colloid Interface Sci 251:120–124CrossRefGoogle Scholar
  9. Caruso F (2000) Hollow capsule processing through colloidal templating and self-assembly. Chem Eur J 6:413–419CrossRefGoogle Scholar
  10. Caruso F, Caruso RA, Möhwald H (1998c) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282:1111–1114CrossRefGoogle Scholar
  11. Caruso F, Kurth DG, Volkmer D, Koop MJ, Müller A (1998a) Ultrathin molybdenum polyoxometalate-polyelectrolyte multilayer films. Langmuir 14:3462–3465CrossRefGoogle Scholar
  12. Caruso F, Lichtenfeld H, Giersig M, Möhwald H (1998b) Electrostatic self-assembly of silica nanoparticle-polyelectrolyte multilayers on polystyrene latex particles. J Am Chem Soc 120:8523–8524CrossRefGoogle Scholar
  13. Casan-Pastor N, Gómez-Romero P (2004) Polyoxometalates: from inorganic chemistry to materials science. Frontiers in Bioscience 9:1759–1770CrossRefGoogle Scholar
  14. Chen Z, Loo BH, Ma Y, Cao Y, He T, Yang W, Yao J (2004) Synthesis of novel photochromic material in the violet color region: composite 1-hexadecylammonium-polyoxomolybdate thin films. Mater Res Bull 39:1167–1173CrossRefGoogle Scholar
  15. Chen Z, Ma Y, Zhang X, Liu B, Yao J (2001) Photochromic inorganic/organic self-assembled superlattice films. J Colloid Interface Sci 240:487–491CrossRefGoogle Scholar
  16. Cheng CX, Tian Y, Shi YQ, Tang RP, Xi F (2005) Porous polymer films and honeycomb structures based on amphiphilic dendronized block copolymers. Langmuir 21:6576–6581CrossRefGoogle Scholar
  17. Clemente-León M, Agricole B, Mingotaud C, Gómez-Garcia CJ, Coronado E, Delhaes P (1997a) Toward new organic/inorganic superlattices: Keggin polyoxometalates in Langmuir and Langmuir-Blodgett films. Langmuir 13:2340–2347CrossRefGoogle Scholar
  18. Clemente-León M, Mingotaud C, Agricole B, Gómez-Garcia CJ, Coronado E, Delhaès P (1997b) Application of the Langmuir-Blodgett technique to polyoxometalates: towards new magnetic films. Angew Chem Int Ed Engl 36:1114–1116CrossRefGoogle Scholar
  19. Clemente-León M, Mingotaud C, Gomez-Garcia CJ, Coronado E, Delhaes P (1998a) Polyoxometalates in Langmuir-Blodgett films: toward new magnetic materials. Thin solid films 327:439–442CrossRefGoogle Scholar
  20. Clemente-León M, Soyer H, Coronado E, Mingotaud C, Gómez-García CJ, Delhaès P (1998b) Langmuir-Blodgett films of single-molecule nanomagnets. Angew Chem Int Ed 37:2842–2845CrossRefGoogle Scholar
  21. Coronado E, Gomez-Garcia CJ (1998) Polyoxometalate-based molecular materials. Chem Rev 98:273–296CrossRefGoogle Scholar
  22. Coronado E, Mingotaud C (1999) Hybrid organic/inorganic Langmuir-Blodgett films: a supramolecular approach to ultrathin magnetic films. Adv Mater 11:869–872CrossRefGoogle Scholar
  23. Cui J, Fan D, Hao J (2009) Magnetic Mo 72 Fe 30-embedded hybrid nanocapsules. J Colloid Interface Sci 330:488–492CrossRefGoogle Scholar
  24. De Boer B, Stalmach U, Nijland H, Hadziioannou G (2000) Microporous honeycomb-structured films of semiconducting block copolymers and their use as patterned templates. Adv Mater 12:1581–1583CrossRefGoogle Scholar
  25. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites Science 277:1232–1237CrossRefGoogle Scholar
  26. Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed 37:2201–2205CrossRefGoogle Scholar
  27. Fan D, Hao J (2009b) Fabrication and electrocatalytic properties of chitosan and Keplerate-type polyoxometalate Mo 72Fe30 hybrid films. J Phys Chem B 113:7513–7516CrossRefGoogle Scholar
  28. Fan D, Hao J (2009a) Phase stability of Keplerate-type polyoxomolybdates controlled by added cationic surfactant. J Colloid Interface Sci 333:757–763CrossRefGoogle Scholar
  29. Fan D, Jia X, Tang P, Hao J, Liu T (2007) Self-patterning of hydrophobic materials into highly ordered honeycomb nanostructures at the air/water interface. Angew Chem Int Ed 46:3342–3345CrossRefGoogle Scholar
  30. Gao G. Xu L. Wang W. An W. Qiu Y. Wang Z. Wang E (2005a) Electrochromic multilayer films of tunable color by combination of copper or iron complex and monolacunary Dawson-type polyoxometalate. J Phys Chem B 109:8948–8953CrossRefGoogle Scholar
  31. Gao L. Wang E. Kang Z. Song Y. Mao B. Xu L (2005b) Layer-by-layer assembly of polyoxometalates into microcapsules. J Phys Chem B 109:16587–16592CrossRefGoogle Scholar
  32. Gaponik N. Radtchenko IL. Sukhorukov GB. Rogach AL (2004) Luminescent polymer microcapsules addressable by a magnetic field. Langmuir 20:1449–1452CrossRefGoogle Scholar
  33. Holland BT, Blanford CF, Stein A (1998) Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 281:538–540CrossRefGoogle Scholar
  34. Imhof A, Pine DJ (1998) Uniform macroporous ceramics and plastics by emulsion templating. Adv Mater 10:697–700CrossRefGoogle Scholar
  35. Jabbour D. Keita B. Nadjo L. Kortz U. Mal SS (2005) The wheel-shaped Cu20-tungstophosphate [Cu20Cl(OH)24(H2O)12(P8W48O184)]25- redox and electrocatalytic properties. Electrochem Commun 7:841–847CrossRefGoogle Scholar
  36. Jenekhe SA. Chen XL (1999) Self-assembly of ordered microporous materials from rod-coil block copolymers. Science 283:372–375CrossRefGoogle Scholar
  37. Jiang M, Wang E, Kang Z, Lian S, Wu A, Li Z (2003) In situ controllable synthesis of polyoxometalate nanoparticles in polyelectrolyte multilayers. J Mater Chem 13: 647–649CrossRefGoogle Scholar
  38. Jiang M, Zhai X, Liu M (2005) Fabrication and photoluminescence of hybrid organized molecular films of a series of gemini amphiphiles and europium (III)-containing polyoxometalate. Langmuir 21:11128–11135CrossRefGoogle Scholar
  39. Karthaus O, Cieren X, Maruyama N, Shimomura M (1999) Mesoscopic 2-D ordering of inorganic/organic hybrid materials. Mater Sci Eng C 10:103–106CrossRefGoogle Scholar
  40. Karthaus O, Maruyama N, Cieren X, Shimomura M, Hasegawa H, Hashimoto T (2000) Water-assisted formation of micrometer-size honeycomb patterns of polymers. Langmuir 16:6071–6076CrossRefGoogle Scholar
  41. Katsoulis DE (1998) A survey of applications of polyoxometalates. Chem Rev 98:359–387CrossRefGoogle Scholar
  42. Keita B, Zhang G, Dolbecq A, Mialane P, Sécheresse F, Miserque F, Nadjo L (2007) MoV-MoVI mixed valence polyoxometalates for facile synthesis of stabilized metal nanoparticles: electrocatalytic oxidation of alcohols. J Phys Chem C 111:8145–8148CrossRefGoogle Scholar
  43. Kortz U, Jeannin YP, Tézé A, Hervé G, Isber SA (1999) Novel dimeric Ni-substituted β-keggin silicotungstate: structure and magnetic properties of K12[β-SiNi2W10O36 (OH)2(H2O)2]·20H2O. Inorg Chem 38:3670–3675CrossRefGoogle Scholar
  44. Kortz U, Müller A, Slageren J, Schnack J, Dalal NS, Dressel M (2009) Polyoxometalates: fascinating structures unique magnetic properties. Coord Chem Rev In PressGoogle Scholar
  45. Kozhevnikov IV (1998) Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem Rev 98:171–198CrossRefGoogle Scholar
  46. Kurth DG, Lehmann P, Volkmer D, Cöelfen H, Koop MJ, Müller A, Du Chesne A (2000a) Surfactant-encapsulated clusters (SECs): (DODA)20(NH4)[H3Mo57V6(NO)6O183(H2O)18], a case study. Chem Eur J 6:385–393CrossRefGoogle Scholar
  47. Kurth DG, Lehmann P, Volkmer D, Müller A, Schwahn D (2000c) Biologically inspired polyoxometalate-surfactant composite materials investigations on the structures of discrete surfactant-encapsulated clusters monolayers and Langmuir-Blodgett films of (DODA)40(NH4)2[(H2O)nMo132O372(CH3CO2)30(H2O)72]. J Chem Soc Dalton Trans 3989: 3989–3998CrossRefGoogle Scholar
  48. Kurth DG, Volkmer D, Ruttorf M, Richter B, Müller A (2000b) Ultrathin composite films incorporating the nanoporous isopolyoxomolybdate “keplerate” (NH4)42 [Mo132O372(CH3COO)30(H2O)72]. Chem Mater 12:2829–2831CrossRefGoogle Scholar
  49. Lee IS, Long JR, Prusiner SB, Safar JG (2005) Selective precipitation of prions by polyoxometalate complexes. J Am Chem Soc 127:13802–13803CrossRefGoogle Scholar
  50. Leporatti S, Voigt A, Mitlöhner R, Sukhorukov G, Donath E, Möhwald H (2000) Scanning force microscopy investigation of polyelectrolyte nano-and microcapsule wall texture. Langmuir 16:4059–4063CrossRefGoogle Scholar
  51. Li H, Sun H, Qi W, Xu M, Wu L (2007) Onionlike hybrid assemblies based on surfactant-encapsulated polyoxometalates. Angew Chem Int Ed 46:1300–1303CrossRefGoogle Scholar
  52. Li W, Yin S, Wang J, Wu L (2008) Tuning mesophase of ammonium amphiphile-encapsulated polyoxometalate complexes through changing component structure. Chem Mater 20:514–522CrossRefGoogle Scholar
  53. Liu C, Gao C, Yan D (2007) Honeycomb-patterned photoluminescent films fabricated by self-assembly of hyperbranched polymers. Angew Chem Int Ed 46:4128–4131CrossRefGoogle Scholar
  54. Liu S, Kurth DG, Bredenkötter B, Volkmer D (2002a) The structure of self-assembled multilayers with polyoxometalate nanoclusters. J Am Chem Soc 124:12279–12287CrossRefGoogle Scholar
  55. Liu S, Kurth DG, Möhwald H, Volkmer D (2002b) A thin-film electrochromic device based on a polyoxometalate cluster. Adv Mater 14:225–228CrossRefGoogle Scholar
  56. Liu S, Möhwald H, Volkmer D, Kurth DG (2006b) Polyoxometalate-based electro-and photochromic dual-mode devices. Langmuir 22:1949–1951CrossRefGoogle Scholar
  57. Liu S, Tang Z, Wang E, Dong S (1999) Fabrication and characterization of heteropolyanion Langmuir-Blodgett films. Thin Solid Films 339:277–283CrossRefGoogle Scholar
  58. Liu S, Volkmer D, Kurth DG (2003) Functional polyoxometalate thin films via electrostatic layer-by-layer self-assembly. J Cluster Sci 14:405–419CrossRefGoogle Scholar
  59. Liu T (2003) Surfactant-induced trans-interface transportation and complex formation of giant polyoxomolybdate-based clusters. J Cluster Sci 14:215–226CrossRefGoogle Scholar
  60. Liu T, Imber B, Diemann E, Liu G, Cokleski K, Li H, Chen Z, Müller A (2006a) Deprotonations and charges of well-defined Mo 72Fe30 nanoacids simply stepwise tuned by pH allow control/variation of related self-assembly processes. J Am Chem Soc 128:15914–15920CrossRefGoogle Scholar
  61. López X, Maestre JM, Bo C, Poblet JM (2001) Electronic properties of polyoxometalates: a DFT study of α/β-[XM12O40]n- relative stability (M= W Mo and X a main group element). J Am Chem Soc 123:9571–9576CrossRefGoogle Scholar
  62. Maruyama N, Koito T, Nishida J, Sawadaishi T, Cieren X, Ijiro K, Karthaus O, Shimomura M (1998) Mesoscopic patterns of molecular aggregates on solid substrates. Thin Solid Films 327-329:854–856CrossRefGoogle Scholar
  63. Mbomekalle IM, Keita B, Lu YW, Nadjo L, Contant R, Belai N, Pope MT (2004) Synthesis characterization and electrochemistry of the novel Dawson-type tungstophosphate [H4PW18O62]7- and first transition metal ions derivatives. Eur J Inorg Chem 2:276–285CrossRefGoogle Scholar
  64. Messer B, Song JH, Huang M, Wu Y, Kim F, Yang P (2000) Surfactant-induced mesoscopic assemblies of inorganic molecular chains. Adv Mater 12:1526–1528CrossRefGoogle Scholar
  65. Moriguchi I, Fendler JH (1998) Characterization and electrochromic properties of ultrathin films self-assembled from poly (diallyldimethylammonium) chloride and sodium decatungstate. Chem Mater 10:2205–2211CrossRefGoogle Scholar
  66. Müller A, Beckmann E, Bögge H, Schmidtmann M, Dress A (2002) Inorganic chemistry goes protein size: a Mo368 nano-hedgehog initiating nanochemistry by symmetry breaking. Angew Chem Int Ed 41:1162–1167CrossRefGoogle Scholar
  67. Müller A, Botar B, Das SK, Bögge H, Schmidtmann M, Merca A (2004) On the complex hedgehog-shaped cluster species containing 368 Mo atoms: simple preparation method new spectral details and information about the unique formation. Polyhedron 23:2381–2385CrossRefGoogle Scholar
  68. Müller A, Das SK, Fedin VP, Krickemeyer E, Beugholt C, Bögge H, Schmidtmann M, Hauptfleisch B (1999b) Rapid and simple isolation of the crystalline molybdenumblue compounds with discrete and linked nanosized ring-shaped anions. Z Anorg Allg Chem 625:1187–1192CrossRefGoogle Scholar
  69. Müller A, Kögerler P, Kuhlmann C (1999c) A variety of combinatorially linkable units as disposition: from a giant icosahedral Keplerate to multi-functional metal-oxide based network structures. Chem Commun 1999:1347–1358CrossRefGoogle Scholar
  70. Müller A, Krickemeyer E, Bögge H, Schmidtmann M, Peters F (1998b) Organizational forms of matter: an inorganic super fullerene and keplerate based on molybdenum oxide. Angew Chem Int Ed 37:3360–3364Google Scholar
  71. Müller A, Luban M, Schröder C, Modler R, Kögerler P, Axenovich M, Schnack J, Canfield P, Bud'ko S, Harrison N (2001) Classical and quantum magnetism in giant keplerate magnetic molecules. ChemPhysChem 2:517–521CrossRefGoogle Scholar
  72. Müller A, Meyer J, Krickemeyer E, Beugholt C, Bögge H, Peters F, Schmidtmann M, Kögerler P, Koop MJ (1998a) Unusual stepwise assembly and molecular growth: [H14Mo37O112]14- and [H3Mo57V6(NO)6O189(H2O)12(MoO)6]21-. Chem Eur J 4:1000–1006CrossRefGoogle Scholar
  73. Müller A, Peters F, Pope MT, Gatteschi D (1998c) Polyoxometalates: very large clusters-nanoscale magnets. Chem Rev 98:239–272CrossRefGoogle Scholar
  74. Müller A, Sarkar S, Shah SQN, Bögge H, Schmidtmann M, Sarkar S, Kögerler P, Hauptfleisch B, Trautwein AX, Schünemann V (1999a) Archimedean synthesis and magic numbers: “sizing” giant molybdenum-oxide-based molecular spheres of the keplerate type. Angew Chem Int Ed 38:3238–3241CrossRefGoogle Scholar
  75. Müller A, Serain C (2000) Soluble molybdenum blues “des pudels kern”. Acc Chem Res 33:2–10CrossRefGoogle Scholar
  76. Nakashima N, Yamada N, Kunitake T (1986) A Fourier transform infrared study of bilayer membranes of double-chain ammonium amphiphiles. J Phys Chem 90:3374–3377CrossRefGoogle Scholar
  77. Nishikawa T, Nishida J, Ookura R, Nishimura SI, Scheumann V, Zizlsperger M, Lawall R, Knoll W, Shimomura M (2000) Web-structured films of an amphiphilic polymer from water in oil emulsion: fabrication and characterization. Langmuir 16:1337–1342CrossRefGoogle Scholar
  78. Nishikawa T, Nishida J, Ookura R, Nishimura SI, Wada S, Karino T, Shimomura M (1999) Honeycomb-patterned thin films of amphiphilic polymers as cell culture substrates. Mater Sci Eng C 8-9:495–500CrossRefGoogle Scholar
  79. Okuyama K, Soboi Y, Iijima N, Hirabayashi K, Kunitake T, Kajiyama T (1988) Molecular and crystal structure of the lipid-model amphiphile dioctadecyldimethylammonium bromide monohydrate. Bull Chem Soc Jpn 61:1485–1490CrossRefGoogle Scholar
  80. Pichon C, Mialane P, Dolbecq A, Marrot J, Rivière E, Bassil BS, Kortz U, Keita B, Nadjo L, Sécheresse F (2008) Octa-and nonanuclear nickel (II) polyoxometalate clusters: synthesis and electrochemical and magnetic characterizations. Inorg Chem 47:11120–11128CrossRefGoogle Scholar
  81. Pitois O, François B (1999) Crystallization of condensation droplets on a liquid surface. Colloid Polym Sci 277:574–578CrossRefGoogle Scholar
  82. Polarz S, Smarsly B, Antonietti M (2001) Colloidal organization and clusters: self-assembly of polyoxometalate-surfactant complexes towards three-dimensional organized structures. ChemPhysChem 2:457–461CrossRefGoogle Scholar
  83. Pope MT, Müller A (1991) Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew Chem Int Ed 30:34–48CrossRefGoogle Scholar
  84. Prinz M, Takács AF, Schnack J, Balasz I, Burzo E, Kortz U, Kuepper K, Neumann M (2006) Magnetic and electronic properties of the iron-containing polyoxotungstate (Fe4(H2O)10(β-SbW9O33)2)6-. J Appl Phys 99:08J505–1–3CrossRefGoogle Scholar
  85. Proust A, Thouvenot R, Gouzerh P (2008) Functionalization of polyoxometalates: towards advanced applications in catalysis and materials science. Chem Commun 2008:1837–1852CrossRefGoogle Scholar
  86. Raynaud M, Chermann JC, Plata F, Jasmin C, Mathé G (1971) Viral inhibitors of murine leukemia-sarcoma group Tungstosilicate. C R Acad Sci Ser D 272:347–348Google Scholar
  87. Rhule JT, Hill CL, Judd DA, Schinazi RF (1998) Polyoxometalates in medicine. Chem Rev 98:327–358CrossRefGoogle Scholar
  88. Sadakane M, Steckhan E (1998) Electrochemical properties of polyoxometalates as electrocatalysts. Chem Rev 98:219–237CrossRefGoogle Scholar
  89. Secheresse F, Ratajczak H, Müller A (2002) Foreword. J Cluster Sci 13:265–266CrossRefGoogle Scholar
  90. Shah PS, Sigman MB, Stowell CA, Lim KT, Johnston KP, Korgel BA (2003) Single-step self-organization of ordered macroporous nanocrystal thin films. Adv Mater 15:971–974CrossRefGoogle Scholar
  91. Shchukin DG, Shutava T, Shchukina E, Sukhorukov GB, Lvov YM (2004) Modified polyelectrolyte microcapsules as smart defense systems. Chem Mater 16:3446–3451CrossRefGoogle Scholar
  92. Shchukin DG, Sukhorukov GB, Möhwald H (2003b) Smart inorganic/organic nanocomposite hollow microcapsules. Angew Chem Int Ed 42:4472–4475CrossRefGoogle Scholar
  93. Shchukin DG, Ustinovich E, Sviridov DV, Lvov YM, Sukhorukov GB (2003a) Photocatalytic microreactors based on TiO2-modified polyelectrolyte multilayer capsules. Photochem Photobiol Sci 2:975–977CrossRefGoogle Scholar
  94. Shchukin DG, Ustinovich EA, Sukhorukov GB, Möhwald H, Sviridov DV (2005) Metallized polyelectrolyte microcapsules. Adv Mater 17:468–472CrossRefGoogle Scholar
  95. Stenzel-Rosenbaum MH (2002) Formation of regular honeycomb-patterned porous film by self-organization. Aust J Chem 55:239–243CrossRefGoogle Scholar
  96. Stenzel-Rosenbaum MH, Davis TP, Fane AG, Chen V (2001) Porous polymer films and honeycomb structure made by the self-organization of well-defined macromolecular structures created by living radical polymerization techniques. Angew Chem Int Ed 40:3428–3432CrossRefGoogle Scholar
  97. Sugeta M, Yamase T (1993) Crystal structure and luminescence site of Na9[EuW10O36]·32H2O. Bull Chem Soc Jpn 66:444–449CrossRefGoogle Scholar
  98. Sukhorukov GB, Donath E, Lichtenfeld H, Knippel E, Knippel M, Budde A, Möhwald H (1998) Layer-by-layer self assembly of polyelectrolytes on colloidal particles. Colloids Surf A 137:253–266CrossRefGoogle Scholar
  99. Sukhorukov GB, Volodkin DV, Günther AM, Petrov AI, Shenoy DB, Möhwald H (2004) Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds. J Mater Chem 14:2073–2081CrossRefGoogle Scholar
  100. Sun H, Li H, Bu W, Xu M, Wu L (2006) Self-organized microporous structures based on surfactant-encapsulated polyoxometalate complexes. J Phys Chem B 110:24847–24854CrossRefGoogle Scholar
  101. Tang P, Hao J (2009) Formation mechanism and morphology modulation of honeycomb hybrid films made of polyoxometalates/surfactants at the air/water interface. J Colloid Interface Sci 333:1–5CrossRefGoogle Scholar
  102. Tang P, Hao J (In prepared) Universal self-patterning of honeycomb-structured microporous films using nano-metre sized inorganic clusters encapsulated with surfactants at the air/water interface.Google Scholar
  103. Tang P, Jia X, Fan D, Wang L, Hao J (2008) Surface charges of hedgehog-shaped polyoxomolybdate modified by a cationic surfactant and the inorganic/organic complex. Colloids Surf A 312:18–23CrossRefGoogle Scholar
  104. Velev OD, Tessier PM, Lenhoff AM, Kaler EW (1999) A class of porous metallic nanostructures. Nature 401:548–548CrossRefGoogle Scholar
  105. Volkmer D, Bredenkötter B, Tellenbröker J, Kögerler P, Kurth DG, Lehmann P, Schnablegger H, Schwahn D, Piepenbrink M, Krebs B (2002) Structure and properties of the Dendron-encapsulated polyoxometalate (C52H60NO12)12[(Mn(H2O))3(SbW9O33)2], a first generation dendrizyme. J Am Chem Soc 124:10489–10496CrossRefGoogle Scholar
  106. Volkmer D, Du Chesne A, Kurth DG, Schnablegger H, Lehmann P, Koop MJ, Müller A (2000) Toward nanodevices: synthesis and characterization of the nanoporous surfactant-encapsulated Keplerate (DODA)40(NH4)2[(H2O)nMo132O372(CH3COO)30 (H2O)72]. J Am Chem Soc 122:1995–1998CrossRefGoogle Scholar
  107. Wang XL, Qin C, Wang EB, Su ZM, Li YG, Xu L (2006) Self-assembly of nanometer-scale [Cu24I10L12]14+ cages and ball-shaped Keggin clusters into a (4,12)-connected 3D framework with photoluminescent and electrochemical properties. Angew Chem Int Ed 45:7411–7414CrossRefGoogle Scholar
  108. Widawski G, Rawiso M, François B (1994) Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 369:387–389CrossRefGoogle Scholar
  109. Xu L, Zhang H, Wang E, Kurth DG, Li Z (2002) Photoluminescent multilayer films based on polyoxometalates. J Mater Chem 12:654–657CrossRefGoogle Scholar
  110. Yabu H, Shimomura M (2005a) Simple fabrication of micro lens arrays. Langmuir 21:1709–1711CrossRefGoogle Scholar
  111. Yabu H, Takebayashi M, Tanaka M, Shimomura M (2005b) Superhydrophobic and lipophobic properties of self-organized honeycomb and pincushion structures. Langmuir 21:3235–3237CrossRefGoogle Scholar
  112. Yin S, Sun H, Yan Y, Li W, Wu L (2009) Hydrogen-bonding-induced supramolecular liquid crystals and luminescent properties of europium-substituted polyoxometalate hybrids. J Phys Chem B 113:2355–2364CrossRefGoogle Scholar
  113. Yonezawa T, Onoue S, Kimizuka N (2001) Self-organized superstructures of fluorocarbon-stabilized silver nanoparticles. Adv Mater 13:140–142CrossRefGoogle Scholar
  114. Zana R (1980) Ionization of cationic micelles: effect of the detergent structure. J Colloid Interface Sci 78:330–337CrossRefGoogle Scholar
  115. Zhao G, Zhu B (2003) Principles of surfactant action. Beijing: China Light Industry PressGoogle Scholar
  116. Zhao X, Cai Q, Shi G, Shi Y, Chen G (2003) Formation of ordered microporous films with water as templates from poly (D L-lactic-co-glycolic acid) solution. J Appl Polym Sci 90:1846–1850CrossRefGoogle Scholar

Copyright information

© Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Key Laboratory for Colloid and Interface ChemistryMinistry of Education, Shandong UniversityJinanChina

Personalised recommendations