Nanostructured Functional Inorganic Materials Templated by Natural Substances

  • Yuanqing Gu
  • Jianguo HuangEmail author
Part of the Advanced Topics in Science and Technology in China book series (ATSTC)


Naturally-produced sophisticated hierarchal structures and the astonishing properties of biological substances are difficult to obtain artificially, even with the most technologically advanced synthetic methodologies. As the needs for the development of advanced materials with improved performance characteristics become increasingly important, the potential of natural substances for material design and fabrication is being actively explored. The combination of versatile synthetic chemical strategies and biological assemblies provides precise replication of natural substances with inorganic/organic matrices, resulting in man-made materials which memorize the initial biological structures. Natural substances provide tailored template structures to be transcribed by guest matrices, or direct the organization of guest substrates in a certain order. This chapter will give a brief review of the research done by means of biotemplate synthesis, which is an emerging, unique approach for the synthesis and organization of inorganic/organic micro- and nano-scale building blocks into well-defined architectures and hence functional bio-inspired materials.


Bacterial Cellulose Tobacco Mosaic Virus Natural Substance Atomic Layer Deposition Nanoparticle Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abedin MJ, Liepold L, Suci P, Young M, Douglas T (2009) Synthesis of a cross-linked branched polymer network in the interior of a protein cage. J Am Chem Soc 131:4346–4354Google Scholar
  2. Aldaye FA, Sleiman HF (2007) Dynamic DNA templates for discrete gold nanoparticle assemblies: control of geometry, modularity, write/erase and structural switching. J Am Chem Soc 129:4130–4131Google Scholar
  3. Allen M, Willits D, Young M, Douglas T (2003) Constrained synthesis of cobalt oxide nanomaterials in the 12-subunit protein cage from Listeria innocua. Inorg Chem 42:6300–6305Google Scholar
  4. Anderson MW, Holmes SM, Hanif N, Cundy CS (2000) Hierarchical pore structures through diatom zeolitization. Angew Chem Int Ed 39:2707–2710Google Scholar
  5. Bachand GD, Rivera SB, Boal AK, Gaudioso J, Liu J, Bunker BC (2004) Assembly and transport of nanocrystal CdSe quantum dot nanocomposites using microtubules and kinesin motor proteins. Nano Lett 4:817–821Google Scholar
  6. Bae A-H, Numata M, Hasegawa T, Li C, Sakurai K, Shinkai S (2005) 1D arrangement of Au nanoparticles by the helical structure of schizophyllan: a unique encounter of a natural product with inorganic compounds. Angew Chem Int Ed 44:2030–2033Google Scholar
  7. Behrens S, Habicht W, Wagner K, Unger E (2006a) Assembly of nanoparticle ring structures based on protein templates. Adv Mater 18:284–289Google Scholar
  8. Behrens S, Habicht W, Wu J, Unger E (2006b) Tubulin assemblies as biomolecular templates for nanostructure synthesis: from nanoparticle arrays to nanowires. Surf Interface Anal 38:1014–1018Google Scholar
  9. Behrens S, Rahn K, Habicht W, Bohm KJ, Rosner H, Dinjus E, Unger E (2002) Nanoscale particle arrays induced by highly ordered protein assemblies. Adv Mater 14:1621–1625Google Scholar
  10. Behrens S, Wu J, Habicht W, Unger E (2004) Silver nanoparticle and nanowire formation by microtubule templates. Chem Mater 16:3085–3090Google Scholar
  11. Bergkvist M, Mark SS, Yang X, Angert ER, Batt C (2004) Bionanofabrication of ordered nanoparticle arrays: effect of particle properties and adsorption conditions. J Phys Chem B 108:8241–8248Google Scholar
  12. Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391:775–778Google Scholar
  13. Bromley KM, Patil AJ, Perriman AW, Stubbs G, S Mann (2008) Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles. J Mater Chem 18:4796–4801Google Scholar
  14. Browning SL, Lodge J, Price RR, Schelleng J, Schoen PE, Zabetakis D (1998) Fabrication and radio frequency characterization of high dielectric loss tubule-based composites near percolation. J Appl Phys 84:6109–6113Google Scholar
  15. Chia S, Urano J, Tamanoi F, Dunn B, Zink JI (2000) Patterned hexagonal arrays of living cells in sol-gel silica films. J Am Chem Soc 122:6488–6489Google Scholar
  16. Chopra S, Pham A, Gaillard J, Parker A, Rao AM (2002) Carbon-nanotube-based resonant-circuit sensor for ammonia. Appl Phys Lett 80:4632–4634Google Scholar
  17. Collins PG, Zettl A, Bando H, Thess A, Smalley RE (1997) Nanotube nanodevice. Science 278:100–102Google Scholar
  18. Cooper AI (2003) Porous materials and supercritical fluids. Adv Mater 15:1049–1059Google Scholar
  19. Crepaldi EL, Soler-Illia G, Grosso D, Albouy P-A, Sanchez C (2001) Design and post-functionalisation of ordered mesoporous zirconia thin films. Chem Commun: 1582–1583Google Scholar
  20. Crowley TA, Ziegler KJ, Lyons DM, Erts D, Olin H, Morris MA, Holmes J (2003) Synthesis of metal and metal oxide nanowire and nanotube arrays within a mesoporous silica template. Chem Mater 15:3518–3522Google Scholar
  21. Culver JN, Dawson WO, Plonk K, Stubbs G (1995) Site-directed mutagenesis confirms the involvement of carboxylate groups in the disassembly of tobacco mosaic virus. Virology 206:724–730Google Scholar
  22. Dennis JE, Carrino DA, Yamashita K, Caplan AI (2000) Monoclonal antibodies to mineralized matrix molecules of the avian eggshell. Matrix Biol 19:683–692Google Scholar
  23. Dieluweit S, Pum D, Sleytr UB (1998) Formation of a gold superlattice on an S-layer with square lattice symmetry. Supramol Sci 5:15–19Google Scholar
  24. Djalali R, Chen Y, Matsui H (2002) Au nanowire fabrication from sequenced histidine-rich peptide. J Am Chem Soc 124:13660–13661Google Scholar
  25. Dong A, Wang Y, Tang Y, Ren N, Zhang Y, Yue Y, Gao Z (2002) Zeolitic tissue through wood cell templating. Adv Mater 14:926–929Google Scholar
  26. Dong L, Hollis T, Connolly BA, Wright NG, Horrocks BR, Houlton A (2007a) DNA-templated semiconductor nanoparticle chains and wires. Adv Mater 19: 1748–1751Google Scholar
  27. Dong Q, Su H, Cao W, Zhang D, Guo Q, Lai Y (2007b) Synthesis and characterizations of hierarchical biomorphic titania oxide by a bio-inspired bottom-up assembly solution technique. J Solid State Chem 180:949–955Google Scholar
  28. Dong Q, Su H, Xu J, Zhang D, Wang R (2007c) Synthesis of biomorphic ZnO interwoven microfibers using eggshell membrane as the biotemplate. Mater Lett 61:2714–2717Google Scholar
  29. Dong Q, Su H, Zhang D (2005) In situ depositing silver nanoclusters on silk fibroin fibers supports by a novel biotemplate redox technique at room temperature. J Phys ChemB 109:17429–17434Google Scholar
  30. Dong Q, Su H, Zhang D, Cao W, Wang N (2007d) Biogenic synthesis of tubular SnO2 with hierarchical intertextures by an aqueous technique involving glycoprotein. Langmuir 23:8108–8113Google Scholar
  31. Douglas K, Devaud G, Clark NA (1992) Transfer of biologically derived nanometer-scale patterns to smooth substrates. Science 257:642–644Google Scholar
  32. Douglas T, Dickson DPE, Betteridge S, Charnock J, Garner CD, Mann S (1995) Synthesis and structure of an iron(III) sulfide-ferritin bioinorganic nanocomposite. Science 269:54–57Google Scholar
  33. Feldkamp Niemeyer CM (2006) Rational design of DNA nanoarchitectures. Angew Chem Int Ed 45:1856–1876Google Scholar
  34. Fernandez MS, Araya M, Arias JL (1997) Eggshells are shaped by a precise spatio-temporal arrangement of sequentially deposited macromolecules. Matrix Biol 16:13–20Google Scholar
  35. Ford WE, Harnack O, Yasuda A, Wessels JM (2001) Platinated DNA as precursors to templated chains of metal nanoparticles. Adv Mater 13:1793–1797Google Scholar
  36. Fowler CE, Shenton W, Stubbs G, Mann S (2001) Tobacco mosaic virus liquid crystals as templates for the interior design of silica mesophases and nanoparticles. Adv Mater 13:1266–1269Google Scholar
  37. Gallis KW, Landry CC (2001) Rapid calcination of nanostructured silicate composites by microwave irradiation. Adv Mater 13:23–26Google Scholar
  38. Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36:1263–1269Google Scholar
  39. Gu Q, Cheng C, Gonela R, Suryanarayanan S, Anabathula S, Dai K, Haynie DT (2006) DNA nanowire fabrication. Nanotechnology 17:R14–R25Google Scholar
  40. Hall SR, Bolger H, Mann S (2003) Morphosynthesis of complex inorganic forms using pollen grain templates. Chem Commun: 2784–2785Google Scholar
  41. Hall SR, Shenton W, Engelhardt H, Mann S (2001) Site-specific organization of gold nanoparticles by biomolecular templating. Chem Phys Chem 2:184–186Google Scholar
  42. Harnack O, Ford WE, Yasuda A, Wessels JM (2002) Tris(hydroxymethyl) phosphine-capped gold particles templated by DNA as nanowire precursors. Nano Lett 2:919–923Google Scholar
  43. Harrison PM, Andrews SC, Artymuik PJ, Ford GC, Guest JR, Hirzmann J, Lawson DM, Livingstone JC, Smith JMA, Treffery A, Yewdall SJ, (1991) Probing structure-function relations in ferritin and bacterioferritin. Adv Inorg Chem 36: 449–486Google Scholar
  44. Hasegawa T, Haraguchi S, Numata M, Fujisawa T, Li C, Kaneko K, Sakurai K, Shinkai S (2005) Schizophyllan can act as a one-dimensional host to construct poly (diacetylene) nanofibers. Chem Lett 34: 40–41Google Scholar
  45. Henrick K, Thornton JM (1998) PQS: a protein quaternary structure file server. Trends Biochem Sci 23: 358–361Google Scholar
  46. Hess H, Clemmens J, Qin D, Howard J, Vogel V (2001) Light-controlled molecular shuttles made from motor proteins carrying cargo on engineered surfaces. Nano Lett 1:235–239Google Scholar
  47. Hincke MT, Gautron J, Panheleux M, Garcia-Ruiz J, McKee MD, Nys Y (2000) Identification and localization of lysozyme as a component of eggshell membranes and eggshell matrix. Matrix Biol 19: 443–453Google Scholar
  48. Huang Y, Chiang C-Y, Lee SK, Gao Y, Hu EL, Yoreo JD, Belcher AM (2005) Programmable assembly of nanoarchitectures using genetically engineered viruses. Nano Lett 5: 1429–1434Google Scholar
  49. Hyodo T, Sasahara K, Shimizu Y, Egashira M (2005) Preparation of macroporous SnO2 films using PMMA microspheres and their sensing properties to NOx and H2. Sens Actuators B 106: 580–590Google Scholar
  50. Imai H, Matsuta M, Shimizu K, Hirashima H, Negishi N (2000) Preparation of TiO2 fibers with well-organized structures. J Mater Chem 10: 2005–2006Google Scholar
  51. Iwahori K, Yoshizawa K, Muraoka M, Yamashita I (2005) Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system. Inorg Chem 44: 6393–6400Google Scholar
  52. Ji Q, Shimizu T (2005) Chemical synthesis of transition metal oxide nanotubes in water using an iced lipid nanotube as a template. Chem Commun: 4411–4413Google Scholar
  53. Kawahashi N, Matijević E (1991) Preparation of hollow spherical particles of yttrium compounds. J Colloid Interface Sci 143:103–110Google Scholar
  54. Kim Y (2003) Small structures fabricated using ash-forming biological materials as templates. Biomacromolecules 4: 908–913Google Scholar
  55. Kim Y, Jung E (2002) Fabrication of discrete materials by interface-selective sol—gel polymerization. Chem Lett 31: 992–993Google Scholar
  56. Kinsella JM, Ivanisevic A (2005) Enzymatic clipping of DNA wires coated with magnetic nanoparticles. J Am Chem Soc 127: 3276–3277Google Scholar
  57. Kinsella JM, Ivanisevic A (2007) DNA-templated magnetic nanowires with different compositions: fabrication and analysis. Langmuir 23: 3886–3890Google Scholar
  58. Klem MT, Resnick DA, Gilmore K, Young M, Idzerda YU, Douglas T (2007) Synthetic control over magnetic moment and exchange bias in all-oxide materials encapsulated within a spherical protein cage. J Am Chem Soc 129: 197–201Google Scholar
  59. Knez M, Bittner AM, Boes F, Wege C, Jeske H, Mai E, Kern K (2003) Biotemplate synthesis of 3-nm Nickel and Cobalt nanowires. Nano Lett 3: 1079–1082Google Scholar
  60. Knez M, Kadri A, Wege C, Gösele U, Jeske H, Nielsch K (2006) Atomic layer deposition on biological macromolecules: metal oxide coating of tobacco mosaic virus and ferritin. Nano Lett 6: 1172–1177Google Scholar
  61. Knez M, Sumser MP, Bittner AM, Wege C, Jeske H, Hoffmann DMP, Kuhnke K, Kern K, (2004a) Binding the tobacco mosaic virus to inorganic surfaces. Langmuir 20: 441–447Google Scholar
  62. Knez M, Sumser MP, Bittner AM, Wege C, Jeske H, Martin TP, Kern K (2004b) Spatially selective nucleation of metal clusters on the tobacco mosaic virus. Adv Funct Mater 14: 116–124Google Scholar
  63. Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ (2000) Nanotube molecular wires as chemical sensors. Science 287: 622–625Google Scholar
  64. Koumoto K, Kimura T, Mizu M, Kunitake T, Sakurai K, Shinkai S (2002) Polysaccharide-polynucleotide complexes. Part 12. Enhanced affinity for various polynucleotide chains by site-specific chemical modification of schizophyllan. J Chem Soc Perkin Trans 1:2477–2484Google Scholar
  65. Kramer RM, Li C, Carter DC, Stone MO, Naik RR (2004) Engineered protein cages for nanomaterial synthesis. J Am Chem Soc 126: 13282–13286Google Scholar
  66. Kumar A, Pattarkine M, Bhadbhade M, Mandale AB, Ganesh KN, Datar SS, Dharmadhikari CV, Sastry M (2001) Linear superclusters of colloidal gold particles by electrostatic assembly on DNA templates. Adv Mater 13: 341–344Google Scholar
  67. Kumara MT, Tripp BC, Muralidharan S (2007a) Exciton energy transfer in self-assembled quantum dots on bioengineered bacterial flagella nanotubes. J Phys Chem C 111:5276–5280Google Scholar
  68. Kumara MT, Tripp BC, Muralidharan S (2007b) Self-assembly of metal nanoparticles and nanotubes on bioengineered flagella scaffolds. Chem Mater 19: 2056–2064Google Scholar
  69. Li C, He J (2006) Easy replication of pueraria lobata toward hierarchically ordered porous γ-Al2O3. Langmuir 22: 2827–2831Google Scholar
  70. Li C, Numata M, Bae A-H, Sakurai S, Shinkai S (2005) Self-assembly of supramolecular chiral insulated molecular wire. J Am Chem Soc 127: 4548–4549Google Scholar
  71. Li M, Viravaidya C, Mann S (2007) Polymer-mediated synthesis of ferritin-encapsulated inorganic nanoparticles. Small 3: 1477–1481Google Scholar
  72. Li S, Zeng Q, Xiao Y, Fu S, Zhou B (1995) Biomimicry of bamboo bast fiber with engineering composite materials. Mater Sci Eng C 3: 125–130Google Scholar
  73. Li X, Fan T, Zhou H, Chow S, Zhang W, Zhang D, Guo Q, Ogawa H (2009) Enhanced light-harvesting and photocatalytic properties in morph-TiO2 from green-leaf biotemplates. Adv Funct Mater 19: 45–46Google Scholar
  74. Li X, Li Y, Cai J, Zhang D (2003) Metallization of bacteria cells. Sci China Ser E 46:161–167Google Scholar
  75. Liu H, Freund MS (1997) New approach for the controlled cross-linking of polyaniline: synthesis and characterization. Macromolecules 30: 5660–5665Google Scholar
  76. Losic D, Mitchell JG, Voelcker NH (2006) Fabrication of gold nanostructures by templating from porous diatom frustules. New J Chem 30: 908–914Google Scholar
  77. Lu Y, Yin Y, Xia Y (2001) Preparation and characterization of micrometer-sized “egg shells”. Adv Mater 13: 271–274Google Scholar
  78. Lvov YM, Price RR, Selinger JV, Singh A, Spector MS, Schnur JM (2000) Imaging nanoscale patterns on biologically derived microstructures. Langmuir 16: 5932–5935Google Scholar
  79. Ma Y, Zhang J, Zhang G, He H (2004) Polyaniline nanowires on Si surfaces fabricated with DNA templates. J Am Chem Soc 126: 7097–7101Google Scholar
  80. Mackle P, Charnock JM, Garner CD, Meldrum FC, Mann S (1993) Characterization of the manganese core of reconstituted ferritin by X-ray absorption spectroscopy. J Am Chem Soc 115:8471–8472Google Scholar
  81. Maddocks AR, Harris AT (2009) Biotemplated synthesis of novel porous SiC. Mater Lett 63: 748–750Google Scholar
  82. Mahltig B, Haufe H, Böttcher H (2005) Functionalisation of textiles by inorganic sol-gel coatings. J Mater Chem 15: 4385–4398Google Scholar
  83. Mallick D, Chakrabarti O, Bhattacharya D, Mukherjee M, Maiti HS, Majumdar R (2007) Electrical conductivity of cellular Si/SiC ceramic composites prepared from plant precursors. J Appl Phys 101: 033707Google Scholar
  84. Mann S (1991) Flattery by imitation. Nature 349: 285–286Google Scholar
  85. Mann S, Meldrum FC (1991) Controlled synthesis of inorganic materials using supramolecular assemblies. Adv Mater 3: 316–318Google Scholar
  86. Mao C, Flynn CE, Hayhurst A, Sweeney R, Qi J, Georgiou G, Iverson B, Belcher AM (2003) Viral assembly of oriented quantum dot nanowires. Proc Natl Acad Sci USA 100:6946–6951Google Scholar
  87. Mao C, Solis DJ, Reiss BD, Kottmann ST, Sweeney RY, Hayhurst A, Georgiou G, Iverson B, Belcher AM (2004) Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303: 213–217Google Scholar
  88. Mark SS, Bergkvist M, Bhatnagar P, Welch C, Goodyear AL, Yang X, Angert ER, Batt CA (2007) Thin film processing using S-layer proteins: biotemplated assembly of colloidal gold etch masks for fabrication of silicon nanopillar arrays. Colloids Surf B 57: 161–173Google Scholar
  89. Mark SS, Bergkvist M, Yang X, Angert ER, Batt CA (2006a) Self-assembly of dendrimer-encapsulated nanoparticle arrays using 2-D microbial S-layer protein biotemplates. Biomacromolecules 7: 1884–1897Google Scholar
  90. Mark SS, Bergkvist M, Yang X, Teixeira LM, Bhatnagar P, Angert ER, Batt CA (2006b) Bionanofabrication of metallic and semiconductor nanoparticle arrays using S-layer protein lattices with different lateral spacings and geometries. Langmuir 22: 3763–3774Google Scholar
  91. Martín-Palma RJ, Pantano CG, Lakhtakia A (2008) Replication of fly eyes by the conformal-evaporated-film-by-rotation technique. Nanotechnology 19: 355704Google Scholar
  92. McMillan RAHJ, Zaluzec NJ, Kagawa HK, Mogul R, Li YF, Paavola CD, Trent JD (2005) A self-assembling protein template for constrained synthesis and patterning of nanoparticle arrays. J Am Chem Soc 127: 2800–2801Google Scholar
  93. Meldrum FC, Douglas T, Levi S, Arosio P, Mann S (1995) Reconstitution of manganese oxide cores in horse spleen and recombinant ferritins. J Inorg Biochem 58: 59–68Google Scholar
  94. Mertig M, Ciacchi LC, Seidel R, Pompe W, Vita AD (2002) DNA as a selective metallization template. Nano Lett 2: 841–844Google Scholar
  95. Mertig M, Kirsch R, Pompe W (1998) Biomolecular approach to nanotube fabrication. Appl Phys A 66: S723–S727Google Scholar
  96. Mertig M, Wahl R, Lehmann M, Simon P, Pompe W (2001) Formation and manipulation of regular metallic nanoparticle arrays on bacterial surface layers: an advanced TEM study. Eur Phys J D 16: 317–320Google Scholar
  97. Mizutani M, Takase H, Adachi N, Ota T, Daimon K, Hikichi Y (2005) Porous ceramics prepared by mimicking silicified wood. Sci Technol Adv Mater 6: 76–83Google Scholar
  98. Monson CF, Woolley AT (2003) DNA-templated construction of copper nanowires. Nano Lett 3: 359–363Google Scholar
  99. Morley KS, Marr PC, Webb PB, Berry AR, Allison FJ, Moldovan G, Brown PD, Howdle SM (2002) Clean preparation of nanoparticulate metals in porous supports: a supercritical route. J Mater Chem 12: 1898–1905Google Scholar
  100. Muthukrishnan G, Hutchins BM, Williams ME, Hancock WO (2006) Transport of semiconductor nanocrystals by kinesin molecular motors. Small 2: 626–630Google Scholar
  101. Nagarajan R, Liu W, Kumar J, Tripathy SK, Bruno FF, Samuelson LA (2001) Manipulating DNA conformation using intertwined conducting polymer chains. Macromolecules 34: 3921–3927Google Scholar
  102. Nakao H, Shiigi H, Yamamoto Y, Tokonami S, Nagaoka T, Sugiyama S, Ohtani T (2003) Highly ordered assemblies of Au nanoparticles organized on DNA. Nano Lett 3: 1391–1394Google Scholar
  103. Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, Chiang YM, Belcher AM (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312: 885–888Google Scholar
  104. Namba K, Pattanayek R, Stubbs GJ (1989) Visualization of protein-nucleic acid interactions in a virus: Refined structure of intact tobacco mosaic virus at 2.9 Å resolution by X-ray fiber diffraction. J Mol Biol 208: 307–325Google Scholar
  105. Norris DJ (2007) Materials science: silicon life forms. Nature 446: 146–147Google Scholar
  106. Numata M, Asai M, Kaneko K, Bae AH, Hasegawa T, Sakurai K, Shinkai S (2005a) Inclusion of cut and as-grown single-walled carbon nanotubes in the helical superstructure of schizophyllan and curdlan (β-1,3-glucans). J Am Chem Soc 127: 5875–5884Google Scholar
  107. Numata M, Asai M, Kaneko K, Hasegawa T, Fujita N, Kitada Y, Sakurai K, Shikai S, (2004a) Curdlan and Schizophyllan (β-1,3-glucans) can entrap single-wall carbon nanotubes in their helical superstructure. Chem Lett 33: 232–233Google Scholar
  108. Numata M, Hasegawa T, Fujisawa T, Sakurai K, Shinkai S (2004b) β-1,3-Glucan (Schizophyllan) can act as a one-dimensional host for creation of novel poly(aniline) nanofiber structures. Org Lett 6: 4447–4450Google Scholar
  109. Numata M, Li C, Bae A-H, Kaneko K, Sakurai K, Shinkai S (2005b) β-1,3-Glucan polysaccharide can act as a one-dimensional host to create novel silica nanofiber structures. Chem Commun: 4655–4657Google Scholar
  110. Numata M, Sugiyasu K, Hasegawa T, Shinkai S (2004c) Sol-gel reaction using DNA as a template: an attempt toward transcription of DNA into inorganic materials. Angew Chem Int Ed 43: 3279–3283Google Scholar
  111. Ogasawara W, Shenton W, Davis SA, Mann S (2000) Template mineralization of ordered macroporous Chitin-silica composites using a cuttlebone-derived organic matrix. Chem Mater 12: 2835–2837Google Scholar
  112. Okuda M, Iwahori K, Yamashita I, Yoshimura H (2003) Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin. Biotechnol Bioeng 84: 187–194Google Scholar
  113. Okuda M, Kobayashi Y, Suzuki K, Sonoda K, Kondoh T, Wagawa A, Kondo A, Yoshimura H (2005) Self-organized inorganic nanoparticle arrays on protein lattices. Nano Lett 5: 991–993Google Scholar
  114. Ono Y, Kanekyo Y, Inoue K, Hojo J, Nango M, Shinkai S (1999) Preparation of novel hollow fiber silica using collagen fibers as a template. Chem Lett 28: 475–476Google Scholar
  115. Ono Y, Nakashima K, Sano M, Kanekyo Y, Inoue K, Hojo J, Shinkai S (1998) Organic gels are useful as a template for the preparation of hollow fiber silica. Chem Commun: 1477–1478Google Scholar
  116. Panhorst M, Brückl H, Kiefer B, Reiss G, Santarius U, Guckenberger R (2001) Formation of metallic surface structures by ion etching using a S-layer template. J Vac Sci Technol B 19: 722–724Google Scholar
  117. Parker AR, Townley HE (2007) Biomimetics of photonic nanostructures. Nat Nanotechnol 2: 347–353Google Scholar
  118. Patolsky F, Weizmann Y, Lioubashevski O, Willner I (2002) Au-nanoparticle nanowires based on DNA and polylysine templates. Angew Chem Int Ed 41: 2323–2327Google Scholar
  119. Patolsky F, Weizmann Y, Willner I (2004) Actin-based metallic nanowires as bio-nanotransporters. Nat Mater 3: 692–695Google Scholar
  120. Pattanayek R, Stubbs GJ (1992) Structure of the U2 strain of tobacco mosaic virus refined at 3.5 Å resolution using X-ray fiber diffraction. J Mol Biol 228: 516–528Google Scholar
  121. Payne EK, Rosi NL, Xue C, Mirkin CA (2005) Sacrificial biological templates for the formation of nanostructured metallic microshells. Angew Chem Int Ed 44: 5064–5067Google Scholar
  122. Pérez-Cabero M, Puchol V, Beltrán D, Amorós P (2008) Thalassiosira pseudonana diatom as biotemplate to produce a macroporous ordered carbon-rich material. Carbon 46: 297–304Google Scholar
  123. Pouget E, Dujardin E, Cavalier A, Moreac A, Valéry C, March-artzner V, Weiss T, Renault A, Paternostre M, Artzner F (2007) Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization. Nat Mater 6: 434–439Google Scholar
  124. Pum D, Schuster B, Sára M, Sleytr UB (2004) Functionalisation of surfaces with S-layers. IEEE Proc Nanobiotechnology 151: 83–86Google Scholar
  125. Qi P, Vermesh O, Grecu M, Javey A, Wang O, Dai HJ, Peng S, Cho KJ (2003) Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 3: 347–351Google Scholar
  126. Radloff C, Vaia RA, Brunton J, Bouwer GT, Ward VK (2005) Metal nanoshell assembly on a virus bioscaffold. Nano Lett 5: 1187–1191Google Scholar
  127. Rambo CR, Sieber H (2005) Novel synthetic route to biomorphic Al2O3 ceramics. Adv Mater 17: 1088–1091Google Scholar
  128. Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300: 625–627Google Scholar
  129. Resnick DA, Gilmore K, Idzerda YU, Klem MT, Allen M, Douglas T, Young M, Arenholz E (2006) Magnetic properties of Co3O4 nanoparticles mineralized in Listeria innocua Dps. J Appl Phys 99: 08Q501Google Scholar
  130. Richter J, Mertig M, Pompe W, Mönch I, Schackert HK (2001) Construction of highly conductive nanowires on a DNA template. Appl Phys Lett 78: 536–538Google Scholar
  131. Richter J, Seidel R, Kirsch R, Mertig M, Pompe W, Plaschke J, Schackert HK (2000) Nanoscale palladium metallization of DNA. Adv Mater 12: 507–510Google Scholar
  132. Rosi NL, Thaxton CS, Mirkin CA (2004) Control of nanoparticle assembly by using DNA-modified diatom templates. Angew Chem Int Ed 43: 5500–5503Google Scholar
  133. Sakintuna B, Yurum Y, (2005) Templated porous carbons: a review article. Ind Eng Chem Res 44: 2893–2902Google Scholar
  134. Sanchez C, Arribart H, Guille MMG (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4: 277–288Google Scholar
  135. Sára M, Pum D, Schuster B, Sleytr UB (2005) S-Layers as patterning elements for application in nanobiotechnology. J Nanosci Nanotechnol 5: 1939–1953Google Scholar
  136. Sastry M, Kumar A, Datar S, Dharmadhikari CV, Ganesh KN (2001) DNA-mediated electrostatic assembly of gold nanoparticles into linear arrays by a simple drop-coating procedure. Appl Phys Lett 78: 2943–2945Google Scholar
  137. Scheibel T (2005) Protein fibers as performance proteins: new technologies and applications. Curr Opin Biotechnol 16: 427–433Google Scholar
  138. Selvakannan PR, Swami A, Srisathiyanarayanan D, Shirude PS, Pasricha R, Mandale AB, Sastry M (2004) Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface. Langmuir 20: 7825–7836Google Scholar
  139. Shemer G, Krichevski O, Markovich G, Molotsky T, Lubovitz I, Kotlyar AB (2006) Chirality of silver nanoparticles synthesized on DNA. J Am Chem Soc 128: 11006–11007Google Scholar
  140. Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11: 253–256Google Scholar
  141. Shenton W, Pum D, Sleytr UB, Mann S (1997) Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers. Nature 389: 585–587Google Scholar
  142. Shim M, Javey A, Kam NWS, Dai HJ (2001) Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J Am Chem Soc 123: 11512–11513Google Scholar
  143. Shin Y, Liu J, Chang JH, Nie Z, Exarhos GJ (2001) Hierarchically ordered ceramics through surfactant-templated sol—gel mineralization of biological cellular structures. Adv Mater 13: 728–732Google Scholar
  144. Sleytr UB, Gyorvary E, Pum D (2003) Crystallization of S-layer protein lattices on surfaces and interfaces. Prog Org Coat 47: 279–287Google Scholar
  145. Sleytr UB, Messner P, Pum D, Sára M (1999) Crystalline bacterial cell surface layers (S-layers): from supramolecular cell structure to biomimetics and nanotechnology. Angew Chem Int Ed 38: 1034–1054Google Scholar
  146. Sotiropoulou S, Sierra-sastre Y, Mark SS, Batt CA (2008) Biotemplated nanostructured materials. Chem Mater 20: 821–834Google Scholar
  147. Spanhel L, Anderson MA (1991) Solvent and secondary kinetic isotope effects for the microhydrated SN2 reaction of Cl-(H2O)n with CH3Cl. J Am Chem Soc 113: 826–832Google Scholar
  148. Stavenga DD (2002) Colour in the eyes of insects. J Comp Physiol A 188: 337–348Google Scholar
  149. Stsiapura V, Sukhanova A, Baranov A, Artemyev M, Kulakovich O, Oleinikov V, Pluot M, Cohen JHM, Nabiev I (2006) DNA-assisted formation of quasi-nanowires from fluorescent CdSe/ZnS nanocrystals. Nanotechnology 17: 581–587Google Scholar
  150. Suh DJ, Park T (2002) Synthesis of high-surface-area zirconia aerogels with a well-developed mesoporous texture using CO2 supercritical drying. Chem Mater 14: 1452–1454Google Scholar
  151. Sumper M, Brunner E (2006) Learning from diatoms: nature's tools for the production of nanostructured silica. Adv Funct Mater 16:17–26Google Scholar
  152. Tans SJ, Devoret MH, Dai HJ, Thess A, Smalley RE, Geerligs LJ, Dekker C (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386: 474–477Google Scholar
  153. Ueno T, Suzuki M, Goto T, Matsumoto T, Nagayama K, Watanabe Y (2004) Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage. Angew Chem Int Ed 43: 2527–2530Google Scholar
  154. Unocic RR, Zalar FM, Sarosi PM, Cai Y, Sandhage KH (2004) Anatase assemblies from algae: coupling biological self-assembly of 3-D nanoparticle structures with synthetic reaction chemistry. Chem Commun: 796–797Google Scholar
  155. Valentini L, Armentano I, Kenny JM, Cantalini C, Lozzi L, Santucci S (2003) Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films. Appl Phys Lett 82: 961–963Google Scholar
  156. Vallet-Regí M, Nicolopoulos S, Román J, Martínez JL, González-Calbet JM (1997) Structural characterization of ZrO2 nanoparticles obtained by aerosol pyrolysis. J Mater Chem 7: 1017–1022Google Scholar
  157. van Bommel KJC, Friggeri A, Shinkai S (2003) Organic templates for the generation of inorganic materials. Angew Chem Int Ed 42: 980–999Google Scholar
  158. van den Heuvel MGL, Butcher CT, Smeets RMM, Diez S, Dekker C (2005) High rectifying efficiencies of microtubule motility on Kinesin-coated gold nanostructures. Nano Lett 5: 1117–1122Google Scholar
  159. Varghese OK, Kichambre PD, Gong D, Ong KG, Dickey EC, Grimes CA (2001) Gas sensing characteristics of multi-wall carbon nanotubes. Sens Actuators B 81: 32–41Google Scholar
  160. Verghese MM, Ramanathan K, Ashraf SM, Kamalasanan MN, Malhotra BD (1996) Electrochemical growth of polyaniline in porous sol-gel films. Chem Mater 8: 822–824Google Scholar
  161. Vincenta JFV, Wegst U G K (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Dev 33: 187–199Google Scholar
  162. Wahl R, Mertig M, Raff J, Selenska-Pobell S, Pompe W (2001) Electron-beam induced formation of highly ordered palladium and platinum nanoparticle arrays on the S-layer of Bacillus sphaericus NCTC 9602. Adv Mater 13: 736–740Google Scholar
  163. Wakayama H, Itahara H, Tatsuda N, Inagaki S, Fukushima Y (2001) Nanoporous metal oxides synthesized by the nanoscale casting process using supercritical fluids. Chem Mater 13: 2392–2396Google Scholar
  164. Wang J, He S, Xie S, Xu L, Gu N (2007) Probing nanomechanical properties of nickel coated bacteria by nanoindentation. Mater Lett 61: 917–920Google Scholar
  165. Wang Y, Liu Z, Han B, Huang Y, Yang G (2005a) Carbon microspheres with supported silver nanoparticles prepared from pollen grains. Langmuir 21:10846–10849Google Scholar
  166. Wang Y, Liu Z, Han B, Sun Z, Du J, Zhang J, Jiang T, Wu W, Miao Z (2005b) Replication of biological organizations through a supercritical fluid route. Chem Commun: 2948–2950Google Scholar
  167. Wang Y, Lu L, Zheng Y, Chen X (2006) Improvement in hydrophilicity of PHBV films by plasma treatment. J Biomed Mater Res A 76A: 589–595Google Scholar
  168. Warne B, Kasyutich OI, Mayes EL, Wiggins JAL, Wong KKW (2000) Self assembled nanoparticulate Co:Pt for data storage applications. IEEE Trans Magn 36: 3009–3011Google Scholar
  169. Weatherspoon MR, Dickerson MB, Wang G, Cai Y, Shian S, Jones SC, Marder SR, Sandhage KH (2007) Thin, conformal, and continuous SnO2 coatings on three-dimensional biosilica templates through hydroxy-group amplification and layer-by-layer alkoxide deposition. Angew Chem Int Ed 46: 5724–5727Google Scholar
  170. Winningham TA, Gillis HP, Chouto DA, Martin KP, Moore JT, Douglas K (1998) Formation of ordered nanocluster arrays by self-assembly on nanopatterned Si(100) surfaces. Surf Sci 406: 221–228Google Scholar
  171. Winningham TA, Whipple SG, Douglas K, (2001) Pattern transfer from a biomolecular nanomask to a substrate via an intermediate transfer layer. J Vac Sci Technol B 19: 1796–1802Google Scholar
  172. Wong KKW, Mann S (1996) Biomimetic synthesis of cadmium sulfide-ferritin nano-composites. Adv Mater 8: 928–932Google Scholar
  173. Wong M, Hendrix MJC, VonderMark K, Little C, Stern R (1984) Collagen in the egg shell membranes of the hen. Dev Biol 104: 28–36Google Scholar
  174. Xie G, Zhang G, Lin F, Zhang J, Liu Z, Mu S (2008) The fabrication of subwavelength anti-reflective nanostructures using a bio-template. Nanotechnology 19: 095605Google Scholar
  175. Xin H, Woolley AT (2003) DNA-templated nanotube localization. J Am Chem Soc 125:8710Google Scholar
  176. Yamashita I, Hayashi J, Hara M (2004) Bio-template synthesis of uniform CdSe nanoparticles using cage-shaped protein, apoferritin. Chem Lett 33: 1158–1159Google Scholar
  177. Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301: 1882–1884Google Scholar
  178. Yang D, Qi L, Ma J (2002) Eggshell membrane templating of hierarchically ordered macroporous networks composed of TiO2 tubes. Adv Mater 14: 1543–1546Google Scholar
  179. Zaitlin M (2000) Tobacco mosaic virus. AAB Descriptions of Plant Viruses 370: 8Google Scholar
  180. Zhang B, Davis SA, Mendelson NH, Mann S (2000) Bacterial templating of zeolite fibres with hierarchical structure. Chem Commun: 781–782Google Scholar
  181. Zhang D, Qi L (2005) Synthesis of mesoporous titania networks consisting of anatase nanowires by templating of bacterial cellulose membranes. Chem Commun: 2735–2737Google Scholar
  182. Zhang G, Yang J, Ohji T (2001) Fabrication of porous ceramics with unidirectionally aligned continuous pores. J Am Ceram Soc 84: 1395–1397Google Scholar
  183. Zhang J, Liu Y, Ke Y, Yan H (2006a) Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Lett 6: 248–251Google Scholar
  184. Zhang W, Zhang D, Fan T, Ding J, Guo Q, Ogawa H (2006b) Fabrication of ZnO microtubes with adjustable nanopores on the walls by the templating of butterfly wing scales. Nanotechnology 17: 840–844Google Scholar
  185. Zhang Z, Buitenhuis J (2007) Synthesis of uniform silica rods, curved silica wires, and silica bundles using filamentous fd virus as a template. Small 3: 424–428Google Scholar
  186. Zhou H, Fan T, Zhang D (2007) Hydrothermal synthesis of ZnO hollow spheres using spherobacterium as biotemplates. Micropor Mesopor Mater 100: 322–327Google Scholar

Copyright information

© Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of ChemistryZhejiang UniversityHangzhou, ZhejiangChina

Personalised recommendations