Silica-based Nanostructured Porous Biomaterials

  • Yang YangEmail author
  • Junbai Li
Part of the Advanced Topics in Science and Technology in China book series (ATSTC)


Recently, the application of nanomaterials in medical and biological fields has become more important. Nanoparticles (NPs) have been used as sensors, fluorescent markers, clinical diagnoses, drug delivery and MRI contrast agents (Lin et al., 2005). Inorganic, porous, ceramic nanoparticles have several advantages in biological applications. They are readily engineered with the desired size, shape, and porosity, and are often inert. The ceramic materials have surfaces with hydroxyl groups, and thus they are always hydrophilic (Paul, Sharma, 2001; Roy et al., 2003; Gemeinhart et al., 2005). Such natural hydrophilicity can decrease oxide particle clearance by the immune system, and thus increases their circulation time in blood (Barbe et al., 2004). Growing interest has recently emerged in utilizing porous ceramic nanomaterials as carriers in biological systems, exploring typical biocompatible ceramic nanoparticles, such as silica, alumina, and titania (Yih, Al-Fandi, 2006).


Mesoporous Silica Atom Transfer Radical Polymerization Guest Molecule Mesoporous Material American Chemical Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 99:12617–12621CrossRefGoogle Scholar
  2. Alivisatos AP (2001) Less is more in medicine. Sci Am 285:66–73CrossRefGoogle Scholar
  3. Andersson J, Rosenholm J, Areva S, Linden M (2004) Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro-and mesoporous silica matrices. Chem Mater 16:4160–4167CrossRefGoogle Scholar
  4. Angelos S, Johansson E, Stoddart JF, Zink JI (2007) Mesostructured silica supports for functional materials and molecular machines. Adv Funct Mater 17:2261–2271CrossRefGoogle Scholar
  5. Bagshaw SA, Prouzet E, Pinnavaia TJ (1995) Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science 269:1242–1244CrossRefGoogle Scholar
  6. Barbe C, Bartlett J, Kong LG, Finnie K, Lin HQ, Larkin M, Calleja S, Bush A, Calleja G (2004) Silica particles: a novel drug-delivery system. Adv Mater 16:1959–1966CrossRefGoogle Scholar
  7. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843CrossRefGoogle Scholar
  8. Cai W, Gentle IR, Lu GQ, Zhu JJ, Yu A (2008) Mesoporous silica templated biolabels with releasable fluorophores for immunoassays. Anal Chem 80:5401–5406CrossRefGoogle Scholar
  9. Calvo EJ, Forzani ES, Otero M (2002) Study of layer-by-layer self-assembled viscoelastic films on thickness-shear mode resonator surfaces. Anal Chem 74:3281–3289CrossRefGoogle Scholar
  10. Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13:11–22CrossRefGoogle Scholar
  11. Caruso F, Shi X, Caruso RA, Susha A (2001) Hollow titania spheres from layered precursor deposition on sacrificial colloidal core particles. Adv Mater 13:740–744CrossRefGoogle Scholar
  12. Casasus R, Marcos MD, Martinez-Manez R, Ros-Lis JV, Soto J, Villaescusa LA, Amoros P, Beltran D, Guillem C, Latorre J (2004) Toward the development of ionically controlled nanoscopic molecular gates. J Am Chem Soc 126:8612–8613CrossRefGoogle Scholar
  13. Cavallaro G, Pierro P, Palumbo FS, Testa F, Pasqua L, Aiello R (2004) Drug delivery devices based on mesoporous silicate. Drug Delivery 11:41–46CrossRefGoogle Scholar
  14. Charnay C, Begu S, Tourne-Peteilh C, Nicole L, Lerner DA, Devoisselle JM (2004) Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property. Eur J Pharm Biopharm 57:533–540CrossRefGoogle Scholar
  15. Chattopadhyay PK, Price DA, Harper TF, Betts MR, Yu J, Gostick E, Perfetto SP, Goepfert P, Koup RA, De Rosa SC, Bruchez MP, Roederer M (2006) Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nat Med 12:972–977CrossRefGoogle Scholar
  16. Dai Z, Voigt A, Leporatti S, Donath E, Dhne L, Möhwald H (2001) Layer-by-layer self-assembly of poly electrolyte and low molecular weight species into capsules. Adv Mater 13:1339–1342CrossRefGoogle Scholar
  17. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefGoogle Scholar
  18. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237CrossRefGoogle Scholar
  19. Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process. 3. consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210/211:831–835CrossRefGoogle Scholar
  20. Deere J, Magner E, Wall JG, Hodnett BK (2003) Adsorption and activity of proteins onto mesoporous silica. Catalysis Letters 85:19–23CrossRefGoogle Scholar
  21. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171CrossRefGoogle Scholar
  22. Fu Q, Rama Rao GV, Ward TL, Lu Y, Lopez GP (2007) Thermoresponsive transport through ordered mesoporous silica/pnipaam copolymer membranes and microspheres. Langmuir 23:170–174CrossRefGoogle Scholar
  23. Fu Q, Rao GVR, Ista LK, Wu Y, Andrzejewski BP, Sklar LA, Ward TL, Lopez GP (2003) Control of molecular transport through stimuli-responsive ordered mesoporous materials. Adv Mater 15:1262–1266CrossRefGoogle Scholar
  24. Ge L, Möhwald H, Li J (2003) Phospholipase A2 hydrolysis of mixed phospholipid vesicles formed on polyelectrolyte hollow capsules. Chem Eur J 9:2589–2594CrossRefGoogle Scholar
  25. Gemeinhart RA, Luo D, Saltzman WM (2005) Cellular fate of a modular dna delivery system mediated by silica nanoparticles. Biotech Prog 21:532–537CrossRefGoogle Scholar
  26. Giri S, Trewyn BG, Stellmaker MP, Lin VSY (2005) Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles 13. Angew Chem Int Edit 44:5038–5044CrossRefGoogle Scholar
  27. Hata H, Saeki S, Kimura T, Sugahara Y, Kuroda K (1999) Adsorption of taxol into ordered mesoporous silicas with various pore diameters. Chem Mater 11:1110–1119CrossRefGoogle Scholar
  28. Heikkila T, Salonen J, Tuura J, Hamdy MS, Mul G, Kumar N, Salmi T, Murzin DY, Laitinen L, Kaukonen AM, Hirvonen J, Lehto VP (2007) Mesoporous silica material tud-1 as a drug delivery system. Int J Pharm 331:133–138CrossRefGoogle Scholar
  29. Hernandez R, Tseng HR, Wong JW, Stoddart JF, Zink JI (2004) An operational supramolecular nanovalve. J Am Chem Soc 126:3370–3371CrossRefGoogle Scholar
  30. Holm BA, Bergey EJ, De T, Rodman DJ, Kapoor R, Levy L, Friend CS, Prasad PN (2002) Nanotechnology in biomedical applications. Mol Cryst Liq Cryst 374:589–598Google Scholar
  31. Huo Q, Margolese DI, Ciesla U, Demuth DG, Feng P, Gier TE, Sieger P, Firouzi A, Chmelka BF (1994) Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem Mater 6:1176–1191CrossRefGoogle Scholar
  32. Inagaki S, Fukushima Y, Kuroda K (1993) Synthesis of highly ordered mesoporous materials from a layered polysilicate. J Chem Soc-Chem Commun:680–682Google Scholar
  33. Izquierdo-Barba I, Martinez A, Doadrio AL, Perez-Pariente J, Vallet-Regí M (2005) Release evaluation of drugs from ordered three-dimensional silica structures. Eur J Pharm Sci 26:365–373CrossRefGoogle Scholar
  34. Jansen JC, Shan Z, Marchese L, Zhou W, van der Puil N, Maschmeyer T (2001) A new templating method for three-dimensional mesopore networks. Chem Commun: 713–714Google Scholar
  35. Jin S, Ye K (2007) Nanoparticle-mediated drug delivery and gene therapy. Biotechnol Prog 23:32–41CrossRefGoogle Scholar
  36. Karen A, Fisher KDHMJT (2003) Comparison of micro-and mesoporous inorganic materials in the uptake and release of the drug model fluorescein and its analogues. Chem-A Eur J 9:5873–5878CrossRefGoogle Scholar
  37. Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery 13. Angew Chem Int Edit 47:8438–8441CrossRefGoogle Scholar
  38. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotech 22:93–97CrossRefGoogle Scholar
  39. Koktysh DS, Liang X, Yun B, Pastoriza-Santos I, Matts RL, Giersig M, Serra-Rodrguez C, Liz-Marzn LM, Kotov NA (2002) Biomaterials by design: layer-by-layer assembled ion-selective and biocompatible films of TiO2 nanoshells for neurochemical monitoring. Adv Funct Mater 12:255–265CrossRefGoogle Scholar
  40. Kosmulski M (2004) pH-dependent surface charging and points of zero charge II. update. J Colloid Interface Sci 275:214–224CrossRefGoogle Scholar
  41. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 359: 710–712CrossRefGoogle Scholar
  42. Kumar R, Roy I, Ohulchanskyy TY, Goswami LN, Bonoiu AC, Bergey EJ, Tramposch KM, Maitra A, Prasad PN (2008) Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano 2:449–456CrossRefGoogle Scholar
  43. Lai C-Y, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VSY (2003) A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125:4451–4459CrossRefGoogle Scholar
  44. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436CrossRefGoogle Scholar
  45. Li, Shi, Hua, Chen, Ruan, Yan (2003a) Hollow spheres of mesoporous aluminosilicate with a three-dimensional pore network and extraordinarily high hydrothermal stability. Nano Letters 3:609–612CrossRefGoogle Scholar
  46. Li D, Cui Y, Wang K, He Q, Yan X, Li J (2007) Thermosensitive nanostructures comprising gold nanoparticles grafted with block copolymers. Adv Funct Mater 17:3134–3140CrossRefGoogle Scholar
  47. Li Y, Shi J, Chen H, Hua Z, Zhang L, Ruan M, Yan J, Yan D (2003b) One-step synthesis of hydrothermally stable cubic mesoporous aluminosilicates with a novel particle structure. Microporous and Mesoporous Materials 60:51–56CrossRefGoogle Scholar
  48. Lin YS, Tsai CP, Huang HY, Kuo CT, Hung Y, Huang DM, Chen YC, Mou CY (2005) Well-ordered mesoporous silica nanoparticles as cell markers. Chem Mater 17: 4570–4573CrossRefGoogle Scholar
  49. Lin YS, Wu SH, Hung Y, Chou YH, Chang C, Lin ML, Tsai CP, Mou CY (2006) Multifunctional composite nanoparticles: magnetic, luminescent, and mesoporous. Chem Mater 18:5170–5172CrossRefGoogle Scholar
  50. Liu N, Chen Z, Dunphy DR, Jiang YB, Assink RA, Brinker CJ (2003a) Photoresponsive nanocomposite formed by self-assembly of an azobenzene-modified silane 13. Angew Chem Int Edit 42:1731–1734CrossRefGoogle Scholar
  51. Liu N, Assink RA, Smarsly B, Brinker CJ (2003b) Synthesis and characterization of highly ordered functional mesoporous silica thin films with positively chargeable-NH2 groups. Chem Commun:1 146–1147Google Scholar
  52. Lu J, Choi E, Tamanoi F, Zink JI (2008) Light-activated nanoimpeller-controlled drug release in cancer cells. Small 4:421–426CrossRefGoogle Scholar
  53. Mal NK, Fujiwara M, Tanaka Y (2003a) Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature 421:350–353CrossRefGoogle Scholar
  54. Mal NK, Fujiwara M, Tanaka Y, Taguchi T, Matsukata M (2003b) Photo-switched storage and release of guest molecules in the pore void of coumarin-modified MCM-41. Chem Mater 15:3385–3394CrossRefGoogle Scholar
  55. Manzano M, Balas F, Civantos A, Vallet-Regí M (2006) Proceedings of the 20th european conference on biomaterials, NantesGoogle Scholar
  56. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544CrossRefGoogle Scholar
  57. Nguyen TD, Tseng HR, Celestre PC, Flood AH, Liu Y, Stoddart JF, Zink JI (2005) A reversible molecular valve. Proc Natl Acad Sci USA 102:10029–10034CrossRefGoogle Scholar
  58. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nano-particles in biomedicine. J Phys D: Appl Phys 36:R167–R181CrossRefGoogle Scholar
  59. Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14:R15–R27CrossRefGoogle Scholar
  60. Patel K, Angelos S, Dichtel WR, Coskun A, Yang Y-W, Zink JI, Stoddart JF (2008) Enzyme-responsive snap-top covered silica nanocontainers. J Am Chem Soc 130: 2382–2383CrossRefGoogle Scholar
  61. Paul W, Sharma C (2001) Porous Hydroxyapatite nanoparticles for intestinal delivery. Trends in Biomaterials and Artificial Organs 14:37–38Google Scholar
  62. Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interfac 85:1–33CrossRefGoogle Scholar
  63. Pelton RH, Pelton HM, Morphesis A, Rowell RL (1989) Particle sizes and electrophoretic mobilities of poly (N-isopropylacrylamide) latex. Langmuir 5:816–818CrossRefGoogle Scholar
  64. Qu F, Zhu G, Huang S, Li S, Sun J, Zhang D, Qiu S (2006) Controlled release of captopril by regulating the pore size and morphology of ordered mesoporous silica. Microporous and Mesoporous Materials 92:1–9CrossRefGoogle Scholar
  65. Roy I, Ohulchanskyy TY, Pudavar HE, Bergey EJ, Oseroff AR, Morgan J (2003) Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug carrier system or photodynamic therapy. Journal of American Chemical Society 125:7860–7865CrossRefGoogle Scholar
  66. Saha S, Leung KCF, Nguyen TD, Stoddart JF, Zink JI (2007) Nanovalves. Adv Funct Mater 17:685–693CrossRefGoogle Scholar
  67. Sakamoto Y, Kim TW, Ryoo R, Terasaki O (2004) Three-dimensional structure of large-pore mesoporous cubic iad silica with complementary pores and its carbon replica by electron crystallography. Angew Chem Int Edit 43:5231–5234CrossRefGoogle Scholar
  68. Sierocki P, Maas H, Dragut P, Richardt G, Vogtle F, De Cola L, Brouwer F, Zink JI (2006) Photoisomerization of azobenzene derivatives in nanostructured silica. J Phys Chem B 110:24390–24398CrossRefGoogle Scholar
  69. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  70. Trewyn BG, Slowing II, Giri S, Chen H-T, Lin VSY (2007) Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Accounts Chem Res 40:846–853CrossRefGoogle Scholar
  71. Trewyn BG, Whitman CM, Lin VSY (2004) Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents. Nano Letters 4:2139–2143CrossRefGoogle Scholar
  72. Vallet-Regí M, Rámila A, del Real RP, Pérez-Pariente J (2001) A new property of mcm-41: drug delivery system. Chem Mater 13:308–311CrossRefGoogle Scholar
  73. Vallet-Regí M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Edit 46:7548–7558CrossRefGoogle Scholar
  74. Washmon-Kriel L, Jimenez VL, Balkus KJ (2000) Cytochrome C immobilization into mesoporous molecular sieves. Journal of Molecular Catalysis B: Enzymatic 10: 453–469CrossRefGoogle Scholar
  75. Wu SH, Lin YS, Hung Y, Chou YH, Hsu YH, Chang C, Mou CY (2008a) Multifunctional mesoporous silica nanoparticles for intracellular labeling and animal magnetic resonance imaging studies. ChemBioChem 9:53–57CrossRefGoogle Scholar
  76. Wu T, Zhang Y, Wang X, Liu S (2008b) Fabrication of hybrid silica nanoparticles densely grafted with thermoresponsive poly (N-isopropylacrylamide) brushes of controlled thickness via surface-initiated atom transfer radical polymerization. Chem Mater 20:101–109CrossRefGoogle Scholar
  77. Yang Q, Wang S, Fan P, Wang L, Di Y, Lin K, Xiao F-S (2005) pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery. Chem Mater 17:5999–6003CrossRefGoogle Scholar
  78. Yang Y, Yan X, Cui Y, He Q, Li D, Wang A, Fei J, Li J (2008) Preparation of polymer-coated mesoporous silica nanoparticles used for cellular imaging by a “graft-from” method. J Mater Chem 18:5731–5737CrossRefGoogle Scholar
  79. Yih TC, Al-Fandi M (2006) Engineered nanoparticles as precise drug delivery systems. J Cell Biochem 97:1184–1190CrossRefGoogle Scholar
  80. You Y-Z, Kalebaila KK, Brock SL, Oupicky D (2008) Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles. Chem Mater 20:3354–3359CrossRefGoogle Scholar
  81. Zeng W, Qian X-F, Zhang Y-B, Yin J, Zhu Z-K (2005) Organic modified mesoporous MCM-41 through solvothermal process as drug delivery system. Mater Res Bull 40: 766–772CrossRefGoogle Scholar
  82. Zhang L, Qiao S, Jin Y, Cheng L, Yan Z, Lu GQ (2008) Hydrophobic functional group initiated helical mesostructured silica for controlled drug release. Adv Funct Mater 18:3834–3842CrossRefGoogle Scholar
  83. Zhang LZ, Tang GQ, Gao BW, Zhang GL (2004) Spectroscopic studies on the excited-state properties of the light-induced antiviral drug hypocrellin a loaded in the mesoporous solid. Chem Phys Lett 396:102–109CrossRefGoogle Scholar
  84. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300. Angstrom Pores Science 279:548–552Google Scholar
  85. Zheng S, Tao C, He Q, Zhu H, Li J (2004) Self-assembly and characterization of polypyrrole and polyallylamine multilayer films and hollow shells. Chem Mater 16: 3677–3681CrossRefGoogle Scholar
  86. Zhu S, Zhou Z, Zhang D (2007) Control of drug release through the in situ assembly of stimuli-responsive ordered mesoporous silica with magnetic particles. ChemPhysChem 8:2478–2483CrossRefGoogle Scholar
  87. Zhu Y, Shi J, Li Y, Chen H, Shen W, Dong X (2005) Hollow mesoporous spheres with cubic pore network as a potential carrier for drug storage and its in vitro release kinetics. J Mater Res 20:54–61CrossRefGoogle Scholar
  88. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957CrossRefGoogle Scholar

Copyright information

© Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.National Center for Nanoscicence and TechnologyBeijingChina
  2. 2.Beijing National Laboratory for Molecular Sciences (BNLMS), International Joint Lab, CAS Key Lab of Colloid and Interface ScienceInstitute of Chemistry, Chinese Academy of SciencesBeijingChina

Personalised recommendations