Advertisement

Traffic Classification Based on Flow Similarity

  • Jae Yoon Chung
  • Byungchul Park
  • Young J. Won
  • John Strassner
  • James W. Hong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5843)

Abstract

Due to the various masquerading strategies adopted by newer P2P applications to avoid detection and filtering, well-known port mapping techniques cannot guarantee their accuracy any more. Alternative approaches, application-signature mapping, behavior-based analysis, and machine learning based classification methods, show more promising accuracy. However, these methods still have complexity issues. This paper provides a new classification method which utilizes cosine similarity between network flows.

Keywords

Traffic classification traffic monitoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IANA, IANA port number list, http://www.iana.org/assignments/port-numbers/
  2. 2.
    Moore, A.W., Papagiannaki, K.: Toward the Accurate Identification of Network Applications. In: Passive and Active Measurement Conference, Boston, MA, USA, March 31-April 1 (2005)Google Scholar
  3. 3.
    Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: Multilevel Traffic Classification in the Dark. In: ACM SIGCOMM 2005, Philadelphia, PA, USA, August 21-26 (2005)Google Scholar
  4. 4.
    Park, B., Won, Y.J., Kim, M.-S., Hong, J.W.: Towards Automated Application Signature Generation for Traffic Identification. In: IEEE/IFIP Network Operations and Management Symposium (NOMS 2008), Salvador, Brazil, April 7-11, pp. 160–167 (2008)Google Scholar
  5. 5.
    Karagiannis, T., Broido, A., Brownlee, N., claffy, K., Faloutsos, M.: Is P2P Dying or just Hiding? In: IEEE Globecom 2004, Dallas, Texas, USA, November 29-December 3 (2004)Google Scholar
  6. 6.
    Kim, S.S., Reddy, A.L.N.: Image-Based Anomaly Detection Technique: Algorithm, Implementation and Effectiveness. IEEE Journal of Selected Areas in Communications 24, 1942–1954 (2006)CrossRefGoogle Scholar
  7. 7.
    Haffner, P., Sen, S., Spatscheck, O.: ACAS: Automated Construction of Application Signatures. In: ACM SIGCOMM 2005, Philadelphia, PA, USA, August 21-26 (2005)Google Scholar
  8. 8.
    Sen, S., Spatscheck, O., Wang, D.: Accurate, Scalable In-Network Identification of P2P Traffic using Application Signatures. In: International World Wide Web Conference, NY, USA, May 19-21, pp. 512–521 (2004)Google Scholar
  9. 9.
    Moore, A.W., Zeuv, D.: Internet Traffic Classification Using Bayesian Analysis Techniques. In: International Conference on Measurements and Modeling of Computer Systems, Banff, Alberta, Canada, June 6-10, pp. 50–60 (2005)Google Scholar
  10. 10.
    Erman, J., Mahanti, A., Arlitt, M., Williamson, C.: Identifying and Discriminating Between Web and Peer-to-peer Traffic in the Network Core. In: International World Wide Web Conference, Banff, Alberta, Canada, May 8-12, pp. 883–892 (2007)Google Scholar
  11. 11.
    Erman, J., Arlitt, M., Mahanti, A.: Traffic Classification Using Clustering Algorithms. In: SIGCOMM Workshop on Mining Network Data, Pisa, Italy, September 11-15, pp. 281–286 (2006)Google Scholar
  12. 12.
    Karagiannis, T., Broido, A., Faloutsos, M., claffy, K.: Transport Layer Identification of P2P Traffic. In: Internet Measurement Conference, Taormina, Sicily, Italy, October 25-27, pp. 121–134 (2004)Google Scholar
  13. 13.
    Choi, T.S., Kim, C.H., Yoon, S., Park, J.S., Lee, B.J., Kim, H.H., Chung, H.S., Jeong, T.S.: Content-aware Internet Application Traffic Measurement and Analysis. In: IEEE/IFIP Network Operations and Management Symposium (NOMS 2004), Seoul, Korea, April 23, vol. 1, pp. 511–524 (2004)Google Scholar
  14. 14.
    Gummadi, K.P., Dunn, R.J., Saroiu, S., Gribble, S.D., Levy, H.M., Zahorjan, J.: Measurement, Modeling, and Analysis of a Peer-to-Peer Filesharing Workload. In: ACM Symposium on Operating Systems Review, December 2003, vol. 27, pp. 314–329 (2003)Google Scholar
  15. 15.
    Salton, G., Buckley, C.: Term-weighting Approaches in Automatic Text Retrieval. Information Processing and Management 24(5), 513–523 (1988)CrossRefGoogle Scholar
  16. 16.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)zbMATHGoogle Scholar
  17. 17.
    Luhn, H.P.: A Statistical Approach to the Mechanized Encoding and Searching of Literary Information. IBM Journal of Research and Development, 309–317 (October 1957)Google Scholar
  18. 18.
    Iliofotou, M., Pappu, P., Faloutsos, M., Mitzenmacher, M., Singh, S., Varghese, G.: Network monitoring using traffic dispersion graphs. In: Internet Measurement Conference, San Diego, CA, USA, October 24-26 (2007)Google Scholar
  19. 19.
  20. 20.
  21. 21.
  22. 22.
  23. 23.
  24. 24.
    Endace, DAG 4.3GE, http://www.endace.com/

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jae Yoon Chung
    • 1
  • Byungchul Park
    • 1
  • Young J. Won
    • 1
  • John Strassner
    • 1
    • 2
  • James W. Hong
    • 1
  1. 1.Dept. of Computer Science and EngineeringPOSTECHKorea
  2. 2.Waterford Institute of TechnologyWaterfordIreland

Personalised recommendations