Advertisement

A Methodology of Traffic Engineering to IP Backbone

  • José E. Bessa Maia
  • Arnoldo N. da Silva
  • Jorge L. C. Silva
  • Paulo R. F. Cunha
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5843)

Abstract

It is essential for the network operator to anticipate events leading to network node and link capacity breakdown in order to guarantee the Quality of Service (QoS) contract. Traffic prediction can be undertaken based on link traffic (aggregate), or on origin-destination (OD) traffic that presents better results. This work investigates a methodology for traffic engineering based on multidimensional OD traffic, focusing on the stage of short-term traffic prediction using Principal Components Analysis and a Local Linear Model. The results validated with data on a real network present a satisfactory margin of error for its adoption in practical situations.

Keywords

Traffic Engineering Traffic Prediction Principal Components Analysis Local Linear Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babiarz, R., Bedo, J.: Internet Traffic Mid-term Forecasting: A Pragmatic Approach Using Statistical Analysis Tools. In: Boavida, F., Plagemann, T., Stiller, B., Westphal, C., Monteiro, E. (eds.) NETWORKING 2006. LNCS, vol. 3976, pp. 110–122. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Lv, J., Li, T., Li, X.: Network Traffic Prediction Algorithm and its Practical Application in real network. In: 2007 IFIP Int. Conf. on Network and Parallel Computing (2007)Google Scholar
  3. 3.
    Gunnar, A., Abrahamsson, H., Söderqvist, M.: Performance of Traffic Engineering in Operational IP-Networks - An Experimental Study. In: Magedanz, T., Madeira, E.R.M., Dini, P. (eds.) IPOM 2005. LNCS, vol. 3751, pp. 202–211. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Lakhina, A., Papagiannaki, K., Crovella, M., Diot, C., Kolaczyk, E., Taft, N.: Structural analysis of network traffic Fows. In: Proc. ACM SIGMETRICS (2004)Google Scholar
  5. 5.
    Cortez, P., Rio, M., Rocha, M., Sousa, P.: Internet Traffic Forecasting using Neural Networks. In: 2006 IJCNN, pp. 16–21 (2006)Google Scholar
  6. 6.
    Vesanto, J.: Using the SOM and Local Models in Time-Series Prediction. In: Proc. WSOM 1997, pp. 209–214 (1997)Google Scholar
  7. 7.
    Barreto, G.A.: Time Series Prediction with the Self-Organizing Map: A Review. Studies in Computational Intelligence (SCI) 77, 135–158 (2007)CrossRefGoogle Scholar
  8. 8.
    Medina, A., Taft, N., Salamatian, K., Bhattacharyya, S., Diot, C.: Traffic matrix estimation: Existing techniques and new directions. In: Proc. ACM SIGCOMM (2002)Google Scholar
  9. 9.
    Uhlig, S., et al.: Providing public intradomain traffic matrices to the research community. ACM SIGCOMM Computer Communication Review 36(1) (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • José E. Bessa Maia
    • 1
  • Arnoldo N. da Silva
    • 2
  • Jorge L. C. Silva
    • 1
  • Paulo R. F. Cunha
    • 2
  1. 1.Department of Statistics and ComputingState Univ. of Ceará – UECE 
  2. 2.Informatics CenterFederal Univ. of Pernambuco - UFPE 

Personalised recommendations