Advertisement

Stochastic Dynamics of Logistic Tumor Growth

  • S. F. C. Shearer
  • S. Sahoo
  • A. Sahoo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5792)

Abstract

We investigate the effect of Gaussian white noises on the logistic growth of tumors. The model consists of the logistic growth dynamics under the influence of two Gaussian white noises, one multiplicative and the other additive. Both noises are correlated with each other. We study diverse aspects of the probability distribution of the size of the growing tumour both in the transient and steady-state regime. The simulation is based on the solution of the time-dependent Fokker-Planck equation associated with stochastic dynamics using B-spline functions.

Keywords

Noise fluctuations avascular tumor growth dynamical-probability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gammaitoni, L., Hanggi, P., Jung, P., Marchesoni, F.: Stochastic Resonance. Rev. Mod. Phys. 70, 223–287 (1998)CrossRefGoogle Scholar
  2. 2.
    Jia, Y., Li, J.R.: Reentrance Phenomena in a Bistable Kinetic Model Driven by Correlated Noise. Phys. Rev. Lett. 78, 994–997 (1997)CrossRefGoogle Scholar
  3. 3.
    Molski, M., Konarski, J.: Coherent states of Gompertzian growth. Phys. Rev. E 68, 021916-1–021916-7 (2003)Google Scholar
  4. 4.
    Ferreira Jr, S.C., Martins, M.L., Vilela, M.J.: Morphology transitions induced by chemotherapy in carcinomas in situ. Phys. Rev. 67, 051914-1–051914-9 (2003)Google Scholar
  5. 5.
    Garay, R.P., Lefever, R.: A kinetic approach to the immunology of cancer: stationary states properties of effector-target cell reactions. J. Theor. Biol. 73, 417–438 (1978)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ai, B.Q., Wang, X.J., Liu, G.T., Liu, L.G.: Correlated noise in a logistic growth model. Phys. Rev. E 67, 022903-1–022903-3 (2003)Google Scholar
  7. 7.
    Ai, B.Q., Wang, X.J., Liu, G.T., Liu, L.G.: Reply to ”Comment on Correlated noise in a logistic growth model”. Phys. Rev. E 77, 013902-1–013902-2 (2008)Google Scholar
  8. 8.
    Behera, A., O’Rourke, S.F.C.: Comment on correlated noise in a logistic growth model. Phys. Rev. E 77, 013901-1–013901-2 (2008)Google Scholar
  9. 9.
    Behera, A., Francesca, S., O’Rourke, C.: The effect of correlated noise in a Gompertz tumor growth model. Brazilian Journal of Physics 38, 272–278 (2008)CrossRefGoogle Scholar
  10. 10.
    Lo, C.F.: Stochastic Gompertz model of tumour cell growth. J. Theor. Biol. 248, 317–321 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Sahoo, S., Mukherjee, S.C., Walters, H.R.J.: Ionization of atomic hydrogen and He +  by slow antiprotons. J. Phys. B 37, 3227–3237 (2004)CrossRefGoogle Scholar
  12. 12.
    Sahoo, S., Gribakin, G.F., Naz, G.S., Kohanoff, J., Riley, D.: Compton scatter profiles for warm dense matter. Phys. Rev. E 77, 046402-1–046402-9 (2008)Google Scholar
  13. 13.
    Risken, H.: The Fokker-Planck Equation. Springer, Berlin (1998)zbMATHGoogle Scholar
  14. 14.
    Petroni, N.C., De Martino, S., De Siena, S.: Exact solutions of Fokker-Planck equations associated to quantum wave functions. Phys. Lett. A 245, 1–10 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    deBore, C.: A Practical Guide to Splines. Springer, New York (1978)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • S. F. C. Shearer
    • 1
  • S. Sahoo
    • 1
  • A. Sahoo
    • 1
  1. 1.Centre for Cancer Research and Cell BiologyQueen’s UniversityBelfastN. Ireland

Personalised recommendations