Scenario Reduction Techniques in Stochastic Programming

  • Werner Römisch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5792)


Stochastic programming problems appear as mathematical models for optimization problems under stochastic uncertainty. Most computational approaches for solving such models are based on approximating the underlying probability distribution by a probability measure with finite support. Since the computational complexity for solving stochastic programs gets worse when increasing the number of atoms (or scenarios), it is sometimes necessary to reduce their number. Techniques for scenario reduction often require fast heuristics for solving combinatorial subproblems. Available techniques are reviewed and open problems are discussed.


Stochastic Program Scenario Reduction Stochastic Programming Model Stochastic Programming Problem Multistage Stochastic Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avella, P., Sassano, A., Vasil’ev, I.: Computational study of large scale p-median problems. Math. Program. 109, 89–114 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Casey, M., Sen, S.: The scenario generation algorithm for multistage stochastic linear programming. Math. Oper. Res. 30, 615–631 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dupačová, J., Consigli, G., Wallace, S.W.: Scenarios for multistage stochastic programs. Ann. Oper. Res. 100, 25–53 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dupačová, J., Gröwe-Kuska, N., Römisch, W.: Scenario reduction in stochastic programming: An approach using probability metrics. Math. Program. 95, 493–511 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Götz, M.: Discrepancy and the error in integration. Monatsh. Math. 136, 99–121 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Heitsch, H., Römisch, W.: Scenario reduction algorithms in stochastic programming. Comp. Optim. Appl. 24, 187–206 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Heitsch, H., Römisch, W.: A note on scenario reduction for two-stage stochastic programs. Oper. Res. Let. 35, 731–736 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Heitsch, H., Römisch, W.: Scenario tree modeling for multistage stochastic programs. Math. Program. 118, 371–406 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Heitsch, H., Römisch, W.: Scenario tree reduction for multistage stochastic programs. Comp. Manag. Science 6, 117–133 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Henrion, R., Küchler, C., Römisch, W.: Discrepancy distances and scenario reduction in two-stage stochastic mixed-integer programming. J. Ind. Manag. Optim. 4, 363–384 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Henrion, R., Küchler, C., Römisch, W.: Scenario reduction in stochastic programming with respect to discrepancy distances. Comp. Optim. Appl. 43, 67–93 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Henrion, R., Küchler, C., Römisch, W.: A scenario reduction heuristic for two-stage stochastic mixed-integer programming (in preparation)Google Scholar
  13. 13.
    Hochreiter, R., Pflug, G.C.: Financial scenario generation for stochastic multi-stage decision processes as facility location problems. Ann. Oper. Res. 152, 257–272 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Høyland, K., Kaut, M., Wallace, S.W.: A heuristic for moment-matching scenario generation. Comp. Optim. Appl. 24, 169–185 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kuhn, D.: Generalized bounds for convex multistage stochastic programs. LNEMS, vol. 548. Springer, Berlin (2005)zbMATHGoogle Scholar
  16. 16.
    Kuhn, D.: Aggregation and discretization in multistage stochastic programming. Math. Program. 113, 61–94 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Niederreiter, H.: Random number generation and Quasi-Monte Carlo methods. CBMS-NSF Regional Conference Series in Applied Mathematics Vol. 63. SIAM, Philadelphia (1992)CrossRefzbMATHGoogle Scholar
  18. 18.
    Pagès, G., Pham, H., Printems, J.: Optimal quantization methods and applications to numerical problems in finance. In: Rachev, S.T. (ed.) Handbook of Computational and Numerical Methods in Finance, pp. 253–297. Birkhäuser, Boston (2004)CrossRefGoogle Scholar
  19. 19.
    Pennanen, T.: Epi-convergent discretizations of multistage stochastic programs via integration quadratures. Math. Program. 116, 461–479 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rachev, S.T., Rüschendorf, L.: Mass Transportation Problems, vol. I, II. Springer, Berlin (1998)zbMATHGoogle Scholar
  21. 21.
    Römisch, W.: Stability of Stochastic Programming Problems. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10, pp. 483–554. Elsevier, Amsterdam (2003)CrossRefGoogle Scholar
  22. 22.
    Römisch, W., Vigerske, S.: Quantitative stability of fully random mixed-integer two-stage stochastic programs. Optim. Lett. 2, 377–388 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Römisch, W., Wets, R.J.-B.: Stability of ε-approximate solutions to convex stochastic programs. SIAM J. Optim. 18, 961–979 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ruszczyński, A., Shapiro, A. (eds.): Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10. Elsevier, Amsterdam (2003)zbMATHGoogle Scholar
  25. 25.
    Shapiro, A.: Inference of statistical bounds for multistage stochastic programming problems. Math. Meth. Oper. Res. 58, 57–68 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Wallace, S.W., Ziemba, W.T. (eds.): Applications of Stochastic Programming. MPS-SIAM Series in Optimization (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Werner Römisch
    • 1
  1. 1.Department of MathematicsHumboldt-University BerlinBerlinGermany

Personalised recommendations