Skip to main content

Efficient Hold-Out for Subset of Regressors

  • Conference paper
Book cover Adaptive and Natural Computing Algorithms (ICANNGA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5495))

Included in the following conference series:

Abstract

Hold-out and cross-validation are among the most useful methods for model selection and performance assessment of machine learning algorithms. In this paper, we present a computationally efficient algorithm for calculating the hold-out performance for sparse regularized least-squares (RLS) in case the method is already trained with the whole training set. The computational complexity of performing the hold-out is , where is the size of the hold-out set and n is the number of basis vectors. The algorithm can thus be used to calculate various types of cross-validation estimates effectively. For example, when m is the number of training examples, the complexities of N-fold and leave-one-out cross-validations are O(m 3/N 2 + (m 2 n)/N) and O(mn), respectively. Further, since sparse RLS can be trained in O(mn 2) time for several regularization parameter values in parallel, the fast hold-out algorithm enables efficient selection of the optimal parameter value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rifkin, R.: Everything Old Is New Again: A Fresh Look at Historical Approaches in Machine Learning. Ph.D thesis, Massachusetts Institute of Technology (2002)

    Google Scholar 

  2. Saunders, C., Gammerman, A., Vovk, V.: Ridge regression learning algorithm in dual variables. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 515–521. Morgan Kaufmann Publishers Inc., San Francisco (1998)

    Google Scholar 

  3. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Processing Letters 9(3), 293–300 (1999)

    Article  MATH  Google Scholar 

  4. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press, Cambridge (2005)

    Google Scholar 

  5. Pahikkala, T., Pyysalo, S., Boberg, J., Järvinen, J., Salakoski, T.: Matrix representations, linear transformations, and kernels for disambiguation in natural language. Machine Learning 74(2), 133–158 (2009)

    Article  MATH  Google Scholar 

  6. Pahikkala, T., Tsivtsivadze, E., Airola, A., Boberg, J., Salakoski, T.: Learning to rank with pairwise regularized least-squares. In: Joachims, T., Li, H., Liu, T.Y., Zhai, C. (eds.) SIGIR 2007 Workshop on Learning to Rank for Information Retrieval, pp. 27–33 (2007)

    Google Scholar 

  7. Pahikkala, T., Tsivtsivadze, E., Airola, A., Järvinen, J., Boberg, J.: An efficient algorithm for learning to rank from preference graphs. Machine Learning 75(1), 129–165 (2009)

    Article  Google Scholar 

  8. Smola, A.J., Schölkopf, B.: Sparse greedy matrix approximation for machine learning. In: Langley, P. (ed.) Proceedings of the Seventeenth International Conference on Machine Learning, pp. 911–918. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  9. Cawley, G.C., Talbot, N.L.C.: Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Networks 17(10), 1467–1475 (2004)

    Article  MATH  Google Scholar 

  10. Pahikkala, T., Boberg, J., Salakoski, T.: Fast n-fold cross-validation for regularized least-squares. In: Honkela, T., Raiko, T., Kortela, J., Valpola, H. (eds.) Proceedings of the Ninth Scandinavian Conference on Artificial Intelligence (SCAI 2006), Espoo, Finland, Otamedia, pp. 83–90 (2006)

    Google Scholar 

  11. An, S., Liu, W., Venkatesh, S.: Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression. Pattern Recognition 40(8), 2154–2162 (2007)

    Article  MATH  Google Scholar 

  12. Rifkin, R., Lippert, R.: Notes on regularized least squares. Technical Report MIT-CSAIL-TR-2007-025, Massachusetts Institute of Technology (2007)

    Google Scholar 

  13. Suominen, H., Pahikkala, T., Salakoski, T.: Critical points in assessing learning performance via cross-validation. In: Honkela, T., Pöllä, M., Paukkeri, M.S., Simula, O. (eds.) Proceedings of the 2nd International and Interdisciplinary Conference on Adaptive Knowledge Representation and Reasoning (AKRR 2008), Helsinki University of Technology, pp. 9–22 (2008)

    Google Scholar 

  14. Quiñonero-Candela, J., Rasmussen, C.E.: A unifying view of sparse approximate gaussian process regression. Journal of Machine Learning Research 6, 1939–1959 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Schölkopf, B., Herbrich, R., Smola, A.J.: A generalized representer theorem. In: Helmbold, D., Williamson, R. (eds.) COLT 2001 and EuroCOLT 2001. LNCS, vol. 2111, pp. 416–426. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Horn, R., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pahikkala, T., Suominen, H., Boberg, J., Salakoski, T. (2009). Efficient Hold-Out for Subset of Regressors. In: Kolehmainen, M., Toivanen, P., Beliczynski, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2009. Lecture Notes in Computer Science, vol 5495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04921-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04921-7_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04920-0

  • Online ISBN: 978-3-642-04921-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics