Skip to main content

Polypeptide Dynamics

  • Chapter
  • First Online:
Molecular Dynamics of Glass-Forming Systems

Part of the book series: Advances in Dielectrics ((ADVDIELECT,volume 1))

  • 1172 Accesses

Abstract

Abstract: Chapter 6 reviews recent efforts to investigate the hierarchical self-assembly and dynamics in an important class of biomaterials: polypeptides. Polypeptides play a vital part of the molecules designed for use in drug delivery of gene therapy and thus have been subject of intensive studies. However, their dynamic response only recently has started to be explored. In the first part we discuss the origin of the dynamic arrest of polypeptides at the glass “transition”. In this respect, pressure plays again a decisive role as it is used to identify structural and dynamic defects (i.e. solitons). Subsequently, and as a direct consequence of the first part, we discuss that, contrary to expectation and common belief, helices in concentrated polypeptide solutions are objects of low persistence. In the third part we address the effect of confinement in controlling the type, the persistence and dynamics of secondary structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walton AG, Blackwell J (1973) Biopolymers. Academic, New York

    Google Scholar 

  2. Block H (1983) Poly(γ-benzyl-l-glutamate) and other glutamic acid containing polymers. Gordon and Breach Science Publishers, New York

    Google Scholar 

  3. Kricheldorf HR (2006) Angew Chem Int Ed 45:5752

    Article  CAS  Google Scholar 

  4. Frauenfelder H, Sligar SG, Wolynes PG (1991) Science 254:1598

    Article  CAS  Google Scholar 

  5. McCammon JA, Gelin BR, Karplus M (1977) Nature 267:585

    Article  CAS  Google Scholar 

  6. Sali A, Shakhnovich E, Karplus M (1994) Nature 369:248

    Article  CAS  Google Scholar 

  7. Deming TJ (1997) Nature 390:386

    Article  CAS  Google Scholar 

  8. Klok HA, Lecommandoux S (2006) Adv Polym Sci 202:75

    Article  CAS  Google Scholar 

  9. Duncan R (2003) Nat Rev Drug Discovery 2:347

    Article  CAS  Google Scholar 

  10. Hakimi O, Knight DP, Knight MM, Grahn MF, Vadgama P (2006) Biomacromolecules 7:2901

    Article  CAS  Google Scholar 

  11. Shoji A, Ozaki T, Saito H, Tabeta R, Ando I (1984) Macromolecules 17:1472

    Article  CAS  Google Scholar 

  12. van Beek JD, Beaulieu L, Schafer H, Demura M, Asakura T, Meier BH (2000) Nature 405:1077

    Article  Google Scholar 

  13. Stockmayer WH (1967) Pure Appl Chem 15:539

    Article  Google Scholar 

  14. Block H (1979) Adv Polym Sci 33:93

    Article  CAS  Google Scholar 

  15. Bur AJ, Roberts DE (1969) J Chem Phys 51:406

    Article  CAS  Google Scholar 

  16. Frauenfleder H, Chen G, Berendzen J, Fenimore PW, Jansson H, McMahon BH, Stroe IR, Swenson J, Young RD (2009) Proc Natl Acad Sci USA 106:5129

    Article  Google Scholar 

  17. Jansson H, Swenson J (2010) Biochim Biophys Acta 1804:20

    Article  CAS  Google Scholar 

  18. Doster W, Cusack S, Petry W (1989) Nature (London) 337:754

    Article  CAS  Google Scholar 

  19. Vitkup D, Melamud E, Moult J, Sander C (2000) Nat Struct Biol 7:34

    Article  CAS  Google Scholar 

  20. Rasmussen BF, Stock AM, Ringe D, Petsko GA (1992) Nature (London) 357:423

    Article  CAS  Google Scholar 

  21. Floudas G, Mpoukouvalas K, Papadopoulos P (2006) J Chem Phys 124:07490

    Article  Google Scholar 

  22. Papadopoulos P, Floudas G, Klok HA, Schnell I, Pakula T (2004) Biomacromolecules 5:81

    Article  CAS  Google Scholar 

  23. Floudas G, Papadopoulos P, Klok HA, Vandermeulen GWM, Rodriguez-Hernandez J (2003) Macromolecules 36:3673

    Article  CAS  Google Scholar 

  24. Papadopoulos P, Floudas G, Schnell I, Klok HA, Aliferis T, Iatrou H, Hadjichristidis N (2005) J Chem Phys 122:224906

    Article  CAS  Google Scholar 

  25. Papadopoulos P, Floudas G, Schnell I, Aliferis T, Iatrou H, Hadjichristidis N (2005) Biomacromolecules 6:2352

    Article  CAS  Google Scholar 

  26. Mondeshki M, Mihov G, Graf R, Spiess HW, Müllen K, Papadopoulos P, Gitsas A, Floudas G (2006) Macromolecules 39:9605

    Article  CAS  Google Scholar 

  27. Koynov K, Mihov G, Mondeshki M, Moon C, Spiess HW, Müllen K, Butt HJ, Floudas G (2007) Biomacromolecules 8:1745

    Article  CAS  Google Scholar 

  28. Gitsas A, Floudas G, Mondeshki M, Spiess HW, Aliferis T, Iatrou H, Hadjichristidis N (2008) Macromolecules 41:8072

    Article  CAS  Google Scholar 

  29. Gitsas A, Floudas G, Modenshki M, Butt HJ, Spiess HW, Iatrou H, Hadjichristidis N (2008) Biomacromolecules 9:1959

    Article  CAS  Google Scholar 

  30. Duran H, Gitsas A, Floudas G, Mondeshki M, Steinhart M, Knoll W (2009) Macromolecules 42:2881

    Article  CAS  Google Scholar 

  31. Gitsas A, Floudas G, Mondeshki M, Lieberwirth I, Spiess HW, Iatrou H, Hadjichristidis N (2010) Macromolecules 43:1874

    Article  CAS  Google Scholar 

  32. Keller H, Debrunner PG (1980) Phys Rev Lett 45:68

    Article  CAS  Google Scholar 

  33. Iben IET, Braunstein D, Doster W, Frauenfelder H, Hong MK, Johnson JB, Luck S, Ormos P, Schulte A, Steinbach PJ, Xie AH, Young RD (1989) Phys Rev Lett 62:1916

    Article  CAS  Google Scholar 

  34. Smith J, Kuczera K, Kaplus M (1990) Proc Natl Acad Sci USA 87:1601

    Article  CAS  Google Scholar 

  35. Norberg J, Nilsson L (1996) Proc Natl Acad Sci USA 93:10173

    Article  CAS  Google Scholar 

  36. Aliferis T, Iatrou H, Hadjichristidis N (2004) Biomacromolecules 5:1653

    Article  CAS  Google Scholar 

  37. Aliferis T, Iatrou H, Hadjichristidis N (2005) J Polym Sci A Polym Chem 43:4670

    Article  CAS  Google Scholar 

  38. Schmidt-Rohr K, Spiess HW (1994) Multidimensional solid-state NMR and polymers. Academic, New York

    Google Scholar 

  39. Papadopoulos P, Peristeraki D, Floudas G, Koutalas G, Hadjichristidis N (2004) Macromolecules 37:8116

    Article  CAS  Google Scholar 

  40. Wada AJ (1958) Chem Phys 29:674; 1959, 30:328; 1959, 30:329

    Google Scholar 

  41. Mori Y, Ookubo N, Hayakawa R, Wada Y (1982) J Polym Sci Polym Phys Ed 20:211

    Article  Google Scholar 

  42. Moscicki K, Williams G (1983) J Polym Sci Polym Phys Ed 21:197

    Article  CAS  Google Scholar 

  43. Watanabe J, Uematsu I (1984) Polymer 25:1711

    Article  CAS  Google Scholar 

  44. Schmidt A, Lehmann S, Georgelin M, Katana G, Mathauer K, Kremer F, Schmidt-Rohr K, Boeffel C, Wegner G, Knoll W (1995) Macromolecules 28:5487

    Article  CAS  Google Scholar 

  45. Hartmann L, Kratzmüller T, Braun HG, Kremer F (2000) Macromol Rapid Commun 21:814

    Article  CAS  Google Scholar 

  46. Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press Inc., New York

    Google Scholar 

  47. Wang C, Pecora R (1980) J Chem Phys 72:5333

    Article  CAS  Google Scholar 

  48. Moscicki JK, Williams G (1983) J Polym Sci Polym Phys Ed 21:213

    Article  CAS  Google Scholar 

  49. Williams G (1982) J Polym Sci Polym Phys Ed 20:1963

    Article  Google Scholar 

  50. Williams G (1983) J Polym Sci Polym Phys Ed 21:2037

    Article  CAS  Google Scholar 

  51. Zimm BH, Bragg JK (1959) J Chem Phys 31:526

    Article  CAS  Google Scholar 

  52. Flory PJ (1978) Macromolecules 11:1126

    Article  CAS  Google Scholar 

  53. Flory PJ, Frost RS (1978) Macromolecules 11:1134

    Article  Google Scholar 

  54. Kremer F, Schönhals A (eds) (2003) Broadband dielectric spectroscopy. Springer, New York

    Google Scholar 

  55. Papadopoulos P, Floudas G (Sept 2005) Dielectrics Newsletters

    Google Scholar 

  56. Floudas G, Spiess HW (2009) Macromol Rapid Commun 30:278

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank several people that contributed to the work presented in this chapter: Prof. N. Hadjichristidis, Prof. H. Iatrou, Prof. H.-A. Klok and Dr. H. Duran for the synthesis; Dr. M. Mondeshki and Prof. H.W. Spiess for the solid state NMR studies and for many fruifull discussions; and Dr. P. Papadopoulos and Dr. A. Gitsas for the dielectric studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Floudas .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Floudas, G., Paluch, M., Grzybowski, A., Ngai, K.L. (2011). Polypeptide Dynamics. In: Molecular Dynamics of Glass-Forming Systems. Advances in Dielectrics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04902-6_6

Download citation

Publish with us

Policies and ethics