Advertisement

MLBPR: MAS for Large-Scale Biometric Pattern Recognition

  • Ram Meshulam
  • Shulamit Reches
  • Aner Yarden
  • Sarit Kraus
Conference paper
  • 392 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4324)

Abstract

Security systems can observe and hear almost anyone everywhere. However, it is impossible to employ an adequate number of human experts to analyze the information explosion. In this paper, we present a multi-agent framework which works in large-scale scenarios and responds in real time. The input for the framework is biometric information acquired at a set of locations. The framework aims to point out individuals who act according to a suspicious pattern across these locations. The framework works in large-scale scenarios. We present two scenarios to demonstrate the usefulness of the framework. The goal in the first scenario is to point out individuals who visited a sequence of airports, using face recognition algorithms. The goal in the second scenario is to point out individuals who called a set of phones, using speaker recognition algorithms. Theoretical performance analysis and simulation results show a high overall accuracy of our system in real-time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ross, A., Jain, A.K.: Multimodal biometrics: An overview. In: Proc. of 12th European Signal Processing Conf., pp. 1221–1224 (2004)Google Scholar
  2. 2.
    Jain, A.K., Ross, A., Prabhakar, S.: Introduction to biometric recognition. Transactions on Circuits and Systems for Video Technology 14(1) (2004)Google Scholar
  3. 3.
    Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.): Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, Menlo Park (1996)Google Scholar
  4. 4.
    Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press, Cambridge (2001)Google Scholar
  5. 5.
    Phillips, P.J., Grother, P., Micheals, R.J., Blackburn, D.M., Tabassi, E., Bone, J.M.: FRVT 2002: Overview and summary. In: Proc. of Face Recognition Vendor Test 2002, Virginia (2002)Google Scholar
  6. 6.
    Przybocki, M., Martin, A.: The NIST speaker recognition evaluation series (2002)Google Scholar
  7. 7.
    Chang, K.I., Bowyer, K.W., Flynn, P.J.: An evaluation of multimodal 2d+3d face biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(4), 619–624 (2005)CrossRefGoogle Scholar
  8. 8.
    Baxevanis, A., Ouellette, B.: Bioinformatics. In: A Practical Guide to the Analysis of Genes and Proteins. Wiley-Interscience, New York (1998)Google Scholar
  9. 9.
    Liao, L., Fox, D., Kautz, H.A.: Location-based activity recognition using relational markov networks. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 773–778 (2005)Google Scholar
  10. 10.
    Wu, G., Wu, Y., Jiao, L., Wang, Y.F., Chang, E.Y.: Multi-camera spatio-temporal fusion and biased sequence-data learning for security surveillance. In: Proceedings of the 11th ACM International Conference on Multimedia (MM 2003), Berkley, California, pp. 528–538. ACM Press, New York (2003)Google Scholar
  11. 11.
    Ashbrook, D., Starner, T.: Using GPS to learn significant locations and predict movement across multiple users. Personal and Ubiquitous Computing 7, 275–286 (2003)CrossRefGoogle Scholar
  12. 12.
    Wayman, J.L.: Fundamentals of biometric authentication technologies. Int. J. of Imaging and Graphics 1(1), 93–97 (2001)CrossRefGoogle Scholar
  13. 13.
    Wang, Y., Tan, T., Jain, A.K.: Combining face and iris biometrics for identity verification. In: Audio and Video-based Biometric Person Authentication, pp. 805–813 (2003)Google Scholar
  14. 14.
    Hong, L., Jain, A.K.: Integrating faces and fingerprints for personal identification. IEEE transactions PAMI 20(12), 1295–1307 (1998)CrossRefGoogle Scholar
  15. 15.
    Lipman, D.J., Pearson, W.: Rapid & sensitive protein similarity searches. Science 227, 1435–1441 (1985)CrossRefGoogle Scholar
  16. 16.
    Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI–BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)CrossRefGoogle Scholar
  17. 17.
    Carberry, S.: Techniques for plan recognition. User Modeling and User-Adapted Interaction: The Journal of Personalization Research 11(1-2), 31–48 (2001)CrossRefzbMATHGoogle Scholar
  18. 18.
    Avrahami-Zilberbrand, D., Kaminka, G.A.: Fast and complete symbolic plan recognition, pp. 653–658 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ram Meshulam
    • 1
  • Shulamit Reches
    • 1
  • Aner Yarden
    • 1
  • Sarit Kraus
    • 1
  1. 1.Bar-Ilan UniversityRamat-GanIsrael

Personalised recommendations