Analyzing Dangers in Multiagent Rescue Using DEFACTO

  • Janusz Marecki
  • Nathan Schurr
  • Milind Tambe
  • Paul Scerri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4324)


Enabling interactions of agent-teams and humans for safe and effective Multiagent rescue is a critical area of research, with encouraging progress in the past few years. However, previous work suffers from three key limitations: (i) limited human situational awareness, reducing human effectiveness in directing agent teams, (ii) the agent team’s rigid interaction strategies that jeopardize the rescue operation, and (iii) lack of formal tools to analyze the impact of such interaction strategies. This paper presents a software prototype called DEFACTO (Demonstrating Effective Flexible Agent Coordination of Teams through Omnipresence). DEFACTO is based on a software proxy architecture and 3D visualization system, which addresses the three limitations mentioned above. First, the 3D visualization interface enables human virtual omnipresence in the environment, improving human situational awareness and ability to assist agents. Second, generalizing past work on adjustable autonomy, the agent team chooses among a variety of ”team-level” interaction strategies, even excluding humans from the loop in extreme circumstances. Third, analysis tools help predict the dangers of using fixed strategies for various agent teams in a future disaster response simulation scenario.


Multiagent Systems Adjustable Autonomy Teamwork 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.F.: The TRAINS project: A case study in building a conversational planning agent. Journal of Experimental and Theoretical AI (JETAI) 7, 748 (1995)Google Scholar
  2. 2.
    Burstein, M.H., Mulvehill, A.M., Deutsch, S.: An approach to mixed-initiative management of heterogeneous software agent teams. In: HICSS, p. 8055. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  3. 3.
    Crandall, J.W., Nielsen, C.W., Goodrich, M.A.: Towards predicting robot team performance. In: SMC (2003)Google Scholar
  4. 4.
    Dorais, G., Bonasso, R., Kortenkamp, D., Pell, P., Schreckenghost, D.: Adjustable autonomy for human centered autonomous systems on mars. In: Mars (1998)Google Scholar
  5. 5.
    Fong, T., Thorpe, C., Baur, C.: Multi-robot remote driving with collaborative control. IEEE Transactions on Industrial Electronics (2002)Google Scholar
  6. 6.
    Hill, R., Gratch, J., Marsella, S., Rickel, J., Swartout, W., Traum, D.: Virtual humans in the mission rehearsal exercise system. In: KI Embodied Conversational Agents (2003)Google Scholar
  7. 7.
    Horvitz, E.: Principles of mixed-initiative user interfaces. In: Proceedings of ACM SIGCHI Conference on Human Factors in Computing Systems (CHI 1999), Pittsburgh, PA, May 1999, pp. 159–166 (1999)Google Scholar
  8. 8.
    Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjoh, A., Shimada, S.: Robocup rescue: Search and rescue in large-scale disasters as a domain for autonomous agents research. In: IEEE SMC, Tokyo, October 1999, vol. VI, pp. 739–743 (1999)Google Scholar
  9. 9.
    Paivio, A.: Pictures and words in visual search. Memory & Cognition 2(3), 515–521 (1974)CrossRefGoogle Scholar
  10. 10.
    Pynadath, D.V., Tambe, M.: Automated teamwork among heterogeneous software agents and humans. Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS) 7, 71–100 (2003)CrossRefGoogle Scholar
  11. 11.
    Richardson, A., Montello, D., Hegarty, M.: Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Memory and Cognition 27(4), 741–750 (1999)CrossRefGoogle Scholar
  12. 12.
    Ruddle, R., Payne, S., Jones, D.: Navigating buildings in desktop virtual environments: Experimental investigations using extended navigational experience. J. Experimental Psychology - Applied 3(2), 143–159 (1997)CrossRefGoogle Scholar
  13. 13.
    Scerri, P., Pynadath, D., Tambe, M.: Towards adjustable autonomy for the real world. Journal of Artificial Intelligence Research 17, 171–228 (2002)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Scerri, P., Pynadath, D.V., Johnson, L., Rosenbloom, P., Schurr, N., Si, M., Tambe, M.: A prototype infrastructure for distributed robot-agent-person teams. In: AAMAS (2003)Google Scholar
  15. 15.
    Neumann, U., You, S., Hu, J., Fox, P.: Urban site modeling from lidar. In: Proc. 2nd Intl Workshop Computer Graphics and Geometric Modeling (CGGM), pp. 579–588 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Janusz Marecki
    • 1
  • Nathan Schurr
    • 1
  • Milind Tambe
    • 1
  • Paul Scerri
    • 2
  1. 1.University of Southern CaliforniaLos Angeles
  2. 2.Carnegie Mellon UniversityPittsburgh

Personalised recommendations