Skip to main content

Holographic Torsion and the Prelude to Kalb–Ramond Superconductivity

  • Chapter
  • First Online:
  • 2881 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 828))

Abstract

We discuss the holographic implications of torsional degrees of freedom in the context of \(\hbox{AdS}_4/\hbox{CFT}_3,\) emphasizing in particular the physical interpretation of the latter as carriers of the non-trivial gravitational magnetic field, i.e. the part of the magnetic field not determined by the frame field. As a concrete example we present a new exact four-dimensional gravitational background with torsion and argue that it corresponds to the holographic dual of a 3D system undergoing parity symmetry breaking. Finally, we compare our new gravitational background with known wormhole solutions—with and without cosmological constant—and argue that they can all be unified under an intriguing “Kalb–Ramond superconductivity” framework.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The recently suggested field theoretic models for M2 branes [2328] are important steps towards the understanding of the boundary side of \(\hbox{AdS}_4/\hbox{CFT}_3.\)

  2. 2.

    See [2931] for recent reviews and [32, 33] for other recent works.

  3. 3.

    More precisely, \(C_{\rm NY}/(2\pi L)^2\) is integral, as it is equal to the difference of two Pontryagin forms, one \(SO(3,2)\) and one \(SO(3,1).\)

  4. 4.

    Explicitly this is \({\Upomega^a}_b=\frac{\sigma}{4}{\epsilon^{acd}}_b \partial_c F e_d.\)

  5. 5.

    We use “central charge” in \(d=3\) for a quantity that counts the massless degrees of freedom at the fixed point. Such a quantity may be taken to be the coefficient in the two-point function of the energy momentum tensor or the coefficient of the free energy density. There is no conformal anomaly in \(d=3.\)

  6. 6.

    We use \(\bar{\psi}^i, \psi^i (a=1,2,\ldots,N)\) two-component Dirac fermions. The \(\gamma\)-matrices are defined in terms of the usual Pauli matrices as \(\gamma^i=\sigma^i\,i=1,2,3.\)

References

  1. Herzog, C.P., Kovtun, P., Sachdev, S., Son, D.T.: Quantum critical transport, duality, and M-theory. Phys. Rev. D75, 085020 (2007). arXiv:hep-th/0701036

    MathSciNet  ADS  Google Scholar 

  2. Hartnoll, S.A., Kovtun, P.K., Muller, M., Sachdev, S.: Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes. Phys. Rev. B76, 144502 (2007). arXiv:0706.3215

    Article  ADS  Google Scholar 

  3. Hartnoll, S.A., Kovtun, P.: Hall conductivity from dyonic black holes. Phys. Rev. D76, 066001 (2007). arXiv:0704.1160

    ADS  Google Scholar 

  4. Hartnoll, S.A., Herzog, C.P.: Ohm’s Law at strong coupling: S duality and the cyclotron resonance. Phys. Rev. D76:106012 (2007). arXiv:0706.3228

    Article  MathSciNet  ADS  Google Scholar 

  5. Keski-Vakkuri, E., Kraus, P.: Quantum hall effect in AdS/CFT. arXiv:0805.4643

    Google Scholar 

  6. Davis, J.L., Kraus, P., Shah, A.: Gravity dual of a quantum hall plateau transition. arXiv:0809.1876

    Google Scholar 

  7. Hartnoll, S.A., Herzog, C.P., Horowitz, G.T.: Building a holographic superconductor. Phys. Rev. Lett. 101, 031601 (2008). arXiv:0803.3295

    Article  ADS  Google Scholar 

  8. Minic, D., Heremans, J.J.: High temperature superconductivity and effective gravity. arXiv:0804.2880

    Google Scholar 

  9. Nakano, E., Wen, W.-Y.: Critical magnetic field in a holographic superconductor. Phys. Rev. D78, 046004 (2008). arXiv:0804.3180

    Article  ADS  Google Scholar 

  10. Albash, T., Johnson, C.V.: A holographic superconductor in an external magnetic field. arXiv:0804.3466

    Google Scholar 

  11. Gubser, S.S., Pufu, S.S.: The gravity dual of a p-wave superconductor. arXiv:0805.2960

    Google Scholar 

  12. Herzog, C.P., Kovtun, P.K., Son, D.T.: Holographic model of superfluidity. arXiv:0809.4870

    Google Scholar 

  13. Basu, P., Mukherjee, A., Shieh, H.H.: Supercurrent: vector hair for an AdS black hole. arXiv:0809.4494

    Google Scholar 

  14. Gubser, S.S.: Breaking an Abelian gauge symmetry near a black hole horizon. arXiv:0801.2977

    Google Scholar 

  15. Gubser, S.S.: Colorful horizons with charge in anti-de Sitter space. arXiv:0803.3483

    Google Scholar 

  16. Gubser, S.S., Rocha, F.D.: The gravity dual to a quantum critical point with spontaneous symmetry breaking. arXiv:0807.1737

    Google Scholar 

  17. Leigh, R.G., Petkou, A.C.: Gravitational duality transformations on (A)dS4. JHEP 11, 079 (2007). arXiv:0704.0531.

    Article  MathSciNet  ADS  Google Scholar 

  18. de Haro, S., Petkou, A.C.: Holographic aspects of electric–magnetic dualities. J. Phys. Conf. Ser. 110, 102003 (2008). arXiv:0710.0965

    Article  ADS  Google Scholar 

  19. Mansi, D.S., Petkou, A.C., Tagliabue, G.: Gravity in the 3 + 1-split formalism I: holography as an initial value problem. arXiv:0808.1212

    Google Scholar 

  20. Mansi, D.S., Petkou, A.C., Tagliabue, G.: Gravity in the 3 + 1-split formalism II: self-duality and the emergence of the gravitational Chern–Simons in the boundary. arXiv:0808.1213

    Google Scholar 

  21. de Haro, S.: Dual gravitons in AdS4/CFT3 and the holographic cotton tensor. arXiv:0808.2054

    Google Scholar 

  22. Giombi, S., Yin, X.: Dual gravitons in AdS4/CFT3 and the holographic cotton tensor. arXiv:0912.3462

    Google Scholar 

  23. Bagger, J., Lambert, N.: Modeling multiple M2’s. Phys. Rev. D75, 045020 (2007). arXiv:hep-th/0611108

    Google Scholar 

  24. Bagger, J., Lambert, N.: Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D77, 065008 (2008). arXiv:0711.0955

    MathSciNet  ADS  Google Scholar 

  25. Bagger, J., Lambert, N.: Comments on multiple M2-branes. JHEP 02, 105 (2008). arXiv:0712.3738

    Article  MathSciNet  ADS  Google Scholar 

  26. Gustavsson, A.: Algebraic structures on parallel M2-branes. arXiv:0709.1260

    Google Scholar 

  27. Hosomichi, K., Lee, K.M., Lee, S., Lee, S., Park, J.: N = 4 superconformal Chern–Simons theories with hyper and twisted hyper multiplets. JHEP 0807, 091 (2008). arXiv:0805.3662

    Google Scholar 

  28. Aharony, O., Bergman, O., Jafferis, D.L., Maldacena, J.: N = 6 superconformal Chern–Simons-matter theories, M2-branes and their gravity duals. arXiv:0806.1218

    Google Scholar 

  29. Shapiro, I.L.: Physical aspects of the space–time torsion. Phys. Rept. 357, 113 (2002). arXiv:hep-th/0103093

    Google Scholar 

  30. Chandia, O., Zanelli, J.: Torsional topological invariants (and their relevance for real life). arXiv:hep-th/9708138

    Google Scholar 

  31. Freidel, L., Minic, D., Takeuchi, T.: Quantum gravity, torsion, parity violation and all that. Phys. Rev. D72, 104002 (2005). arXiv:hep-th/0507253

    Article  MathSciNet  ADS  Google Scholar 

  32. Mercuri, S.: From the Einstein–Cartan to the Ashtekar–Barbero canonical constraints, passing through the Nieh–Yan functional. Phys. Rev. D77, 024036 (2008). arXiv:0708.0037 [hep-th]

    MathSciNet  ADS  Google Scholar 

  33. Canfora, F.: Some solutions with torsion in Chern–Simons gravity and observable effects. arXiv:0706.3538 [hep-th]

    Google Scholar 

  34. Leigh, R.G., Hoang, N.N., Petkou, A.C.: JHEP 0903:033 (2009). arXiv:0809.5258 [hep-th]

    Google Scholar 

  35. Giddings, S.B., Strominger, A.: Axion induced topology change in quantum gravity and string theory. Nucl. Phys. B306, 890 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  36. Gutperle, M., Sabra, W.: Instantons and wormholes in Minkowski and (A)dS spaces. Nucl. Phys. B647:344–356 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. D’Auria, R., Regge, T.: Gravity theories with asymptotically flat instantons. Nucl. Phys. B195:308 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  38. Leigh, R.G., Petkou, A.C.: SL(2,Z) action on three-dimensional CFTs and holography. JHEP 12, 020 (2003). arXiv:hep-th/0309177

    Article  MathSciNet  ADS  Google Scholar 

  39. Gibbons, G.W., Green, M.B., Perry, M.J.: Instantons and Seven–Branes in Type IIB superstring theory. Phys. Lett. B370, 37–44 (1996). arXiv:hep-th/9511080

    MathSciNet  ADS  Google Scholar 

  40. Balasubramanian, V., Kraus, P.: A stress tensor for anti-de Sitter gravity. Commun. Math. Phys. 208, 413–428 (1999). arXiv:hep-th/9902121

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Kraus, P., Larsen, F., Siebelink, R.: The gravitational action in asymptotically AdS and flat spacetimes. Nucl. Phys. B563:259–278 (1999). arXiv:hep-th/9906127

    Article  MathSciNet  ADS  Google Scholar 

  42. Witten, E.: SL(2,Z) action on three-dimensional conformal field theories with Abelian symmetry. arXiv:hep-th/0307041

    Google Scholar 

  43. Leigh R.G., Nguyen-Hoang N., Petkou, A.C.: JHEP 0903, 033 (2009). arXiv:0809.5258 [hep-th]

    Google Scholar 

  44. Tinkham, M.: Introduction to Superconductivity, 2nd ed. Dover Publications, New York (1996)

    Google Scholar 

  45. Niemi, A.J., Semenoff, G.W.: Axial anomaly induced Fermion fractionization and effective gauge theory actions in odd dimensional space-times. Phys. Rev. Lett. 51, 2077 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  46. Redlich, A.N.: Parity violation and gauge noninvariance of the effective gauge field action in three-dimensions. Phys. Rev. D29:2366–2374 (1984)

    MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

I thank the organizers and in particular Lefteris Papantonopoulos for the organization of a top quality workshop and the invitation to present this talk. This work is partially supported by the FP7-REGPOT-2008-1 “CreteHEPCosmo” No 228644 and also by the University of Crete ELKE grant with KA 2745. I wish to thank R. G. Leigh and N. N. Hoang for the very fruitful and pleasant collaboration that has led to the results presented in this report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios C. Petkou .

Editor information

Editors and Affiliations

Appendices

Appendix

Parity Breaking in Three Dimensions

Consider the 3D Gross–Neveu model coupled to abelian gauge fields. The Euclidean action isFootnote 6

$$ I=-\int d^3x\left[\bar{\psi}^a\left({\slash\!\!\!}\partial-{\rm i}e{\slash \!\!\!\!A}\right)\psi^a +\frac{G}{2N}\left(\bar{\psi}^a\psi^a\right)^2 +\frac{1}{4M}F_{\mu\nu}F_{\mu\nu}\right]. $$
(A.1)

\(M\) is an UV mass scale. Introducing the usual Lagrange multiplier field \(\sigma,\) whose equation of motion is \(\sigma =\frac{-2G}{N}\bar{\psi}^a\psi^a\) we can make the action quadratic in the fermions

$$ I=-\int d^3x\left[\bar{\psi}^a\left({\slash\!\!\!}\partial+\sigma-{\rm i}e{\slash \!\!\!\!A}\right)\psi^a -\frac{N}{2G}\sigma^2-\frac{1}{4M}F^{\mu\nu}F_{\mu\nu}\right]. $$
(A.2)

The model possesses two parity breaking vacua distinguished by the value of the pseudoscalar order parameter \(\langle\sigma\rangle.\) This is seen as follows: switching off the gauge fields momentarily one integrates over the fermions to produce a large-\(N\) effective action as

$$ {\mathcal{Z}} = \int({\mathcal{D}}\sigma)e^{N\left[\hbox{Tr}\log\left({\slash\!\!\!}\partial +\sigma\right)-\frac{1}{2G}\int d^3x\sigma^2\right]}. $$
(A.3)

The path integral has a non-zero large-\(N\) extremum \(\sigma_*\) found by setting \(\sigma =\sigma_* +\frac{1}{\sqrt{N}}\lambda\)

$$ {\mathcal{Z}} =\int ({\mathcal{D}}\lambda) e^{N\left[\hbox{Tr}\log\left({\slash\!\!\!}\partial +\sigma_*\right)-\frac{1}{2G}\int d^3x \sigma_* +\frac{1}{\sqrt{N}}\left\{ \hbox{Tr}\frac{\lambda}{{\slash\!\!\!}\partial+\sigma_*}-\frac{\sigma_*}{G}\int d^3x\lambda\right\}+O(1/N)\right]} $$
(A.4)

The term in the curly brackets is the gap equation. To study it one considers a uniform momentum cutoff \(\Uplambda\) to obtain

$$ \frac{1}{G}=\int^\Uplambda\frac{d^3p}{(2\pi)^3} \frac{2}{p^2+\sigma_*^2}=(\hbox{Tr} 1)\left[\frac{\Uplambda}{\pi^2}-\frac{|\sigma_*|} {\pi^2}\arctan\frac{\Uplambda}{|\sigma_*|}\right]. $$
(A.5)

Defining the critical coupling as

$$ \frac{1}{G_*}=\frac{\Uplambda}{\pi^2}, $$
(A.6)

(A.5) possesses a non-zero solution for \(\sigma_*\) when \(G>G_*\) given by

$$ |\sigma_*|=\frac{2\pi}{G}\left(\frac{G}{G_*}-1\right)\equiv m. $$
(A.7)

The two distinct parity breaking vacua then have

$$ \sigma_*=-\frac{2G}{N}\langle\bar{\psi}^a\psi^a\rangle =\pm m. $$
(A.8)

Going back to (A.2) one can tune \(G>G_*\) and start in any of the two parity breaking vacua. Suppose we start from \(\sigma_*=+m.\) To leading order in \(N\) we have

$$ \begin{aligned} {\mathcal{Z}}&=\int ({\mathcal{D}}A_\mu)({\mathcal{D}} \bar{\psi}^a)({\mathcal{D}}\psi^a)\exp[{\mathcal{S}}]\\ {\mathcal{S}}&=\int d^3x\left[\bar{\psi}^a\left({\slash\!\!\!}\partial +m-{\rm i}e{\slash\!\!\!\!} A\right)\psi^a-\frac{N}{2G}m^2+O(1/\sqrt{N}) -\frac{1}{4M}F^{\mu\nu}F_{\mu\nu}\right] \end{aligned} $$
(A.9)

As is well known [45, 46] for \(N\) fermions the path integral (A.9) yields an effective action for the gauge fields which for low momenta is dominated by the Chern–Simons term i.e.

$$ {\mathcal{Z}} \approx \int e^{S_{\rm CS}}, $$
(A.10)

with

$$ S_{\rm CS} =\hbox{i}\frac{ke^2}{4\pi}\int d^3x \epsilon^{\mu\nu\rho}A_\mu\partial_\nu A_\rho,\quad k=\frac{N}{2}. $$
(A.11)

Had we started from the \(\sigma_*=-m\) vacuum, we would have found again (A.10A.11), however with \(k=-\frac{N}{2},\) i.e. the vacuum with \(\sigma_*=-m\) yields an effective Chern–Simons action with \(k=-\frac{N}{2}.\)

Consider now \(deforming\) the action (A.9) by the Chern–Simons term with a fixed coefficient as

$$ \begin{aligned} {\mathcal{Z}}_{\rm deform}&=\int ({\mathcal{D}}A_\mu)({\mathcal{D}} \bar{\psi}^i)({\mathcal{D}}\psi^i)\exp[{\mathcal{S}}_{def}]\\ {\mathcal{S}}_{\rm def}&={\mathcal{S}}-\hbox{i}q\int d^3x\epsilon^{\mu\nu\rho} A_\mu\partial_\nu A_\rho \end{aligned} $$
(A.12)

If \(q\) is fixed to

$$ q=\frac{Ne^2}{4\pi}, $$
(A.13)

the effective action for the gauge fields resulting from the fermionic path integrals in (A.12) is going to be \(equal\) to the one obtained had we started at the \(\sigma_*=-m\) vacuum. In other words, deforming the \(\sigma_*=+m\) vacuum with a Chern–Simons term with a fixed coefficient is equivalent to being in the \(\sigma_*=-m\) vacuum. This is exactly analogous to the holographic interpretation of our torsion DW.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Petkou, A.C. (2011). Holographic Torsion and the Prelude to Kalb–Ramond Superconductivity. In: Papantonopoulos, E. (eds) From Gravity to Thermal Gauge Theories: The AdS/CFT Correspondence. Lecture Notes in Physics, vol 828. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04864-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04864-7_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04863-0

  • Online ISBN: 978-3-642-04864-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics