Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 828))

Abstract

These introductory notes concern basic properties of negative constant curvature spacetimes and their black holes. For comparison purposes we will begin by reviewing flat spacetime, the spacetime diagram and two particular patches, Milne and Rindler. We will then discuss anti de Sitter, its symmetries, basic properties and the construction of the spacetime diagram. We then look into the properties of anti de Sitter spacetime giving some global and local parametrisations. We will study the static black holes and then discuss their basic properties and novel topological effects due to the presence of a negative cosmological constant. We show using the classical Euclidean path integral approach their thermodynamic properties in the canonical ensemble with a heat bath of constant temperature. Finally we discuss, rather briefly, stationary and axially symmetric spacetimes and some properties of the rotating black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The boundary is called conformal for it admits not one but an equivalence class of metrics which are related via a conformal transformation, \(g_{\mu\nu}^{boundary}=\Upomega \Upgamma_{\mu\nu}^{boundary}.\) This equivalence class is manifest in the arbitrariness of \(\Uplambda\) in (1.16).

  2. 2.

    This is quite unlike the situation for Kerr’s solution at asymptotic infinity.

References

  1. Hawking, S.W., Ellis, G.F.R.: The The Large Scale Structure of Space-Time. Cambridge University press, Cambridge (1973)

    Book  MATH  Google Scholar 

  2. Birell, N.D., Davies, D.C.W.: Quantum Fields in Curved Space, Cambridge Monographs in Mathematical Physics. Cambridge University press, New York (1982)

    Book  Google Scholar 

  3. Balasubramanian, V., Kraus, P., Lawrence, A.E.: Phys. Rev. D 59, 046003 (1999) [arXiv:hep-th/9805171]

    Article  MathSciNet  ADS  Google Scholar 

  4. Dufaux, J.-F.: Modèles branaires en théories de gravité généralisés. PhD thesis, Orsay (2004)

    Google Scholar 

  5. Wald, R.M.: General Relativity. The University of Chicago Press, Chicago(1984)

    MATH  Google Scholar 

  6. Bowcock, P., Charmousis, C., Gregory, R.: Class. Quant. Grav. 17, 4745 (2000) [arXiv:hep-th/0007177]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Birmingham, D.: Class. Quant. Grav. 16, 1197 (1999) [hep-th/9808032]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Emparan, R.: Phys. Lett. B 432, 74 (1998), [arXiv:hep-th/9804031]

    Article  MathSciNet  ADS  Google Scholar 

  9. Papadimitriou, I., Skenderis, K.: JHEP 0508, 004 (2005) [arXiv:hep-th/0505190]

    Article  MathSciNet  ADS  Google Scholar 

  10. Skenderis, K.: Class. Quant. Grav. 19, 5849 (2002) [arXiv:hep-th/0209067]

    Article  MathSciNet  MATH  Google Scholar 

  11. Chamblin, A., Emparan, R., Johnson, C.V., Myers, R.C.: Phys. Rev. D 60, 064018 (1999) [arXiv:hep-th/9902170]

    Article  MathSciNet  ADS  Google Scholar 

  12. Emparan, R., Reall, H.S.: Living Rev. Rel. 11, 6 (2008) [arXiv:0801.3471 [hep-th]]

    Google Scholar 

  13. Aminneborg, S., Bengtsson, I., Holst, S., Peldán, P.: Class. Quant. Grav. 13, 2707 (1996) [gr-qc/9604005]

    Article  ADS  MATH  Google Scholar 

  14. Lemos, J.P.S.: Phys. Lett. B 353, 46 (1995) [arXiv:gr-qc/9404041]

    Article  MathSciNet  ADS  Google Scholar 

  15. Lemos, J.P.S.: Class. Quant. Grav. 12, 1081 (1995) [arXiv:gr-qc/9407024]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Brill, D., Louko, J., Peldán, P.: Phys. Rev. D 56, 3600 (1997) gr-qc/9705012

    Article  MathSciNet  ADS  Google Scholar 

  17. Emparan, R.: JHEP 9906, 036 (1999) [arXiv:hep-th/9906040]

    Article  MathSciNet  ADS  Google Scholar 

  18. Gibbons, G.W., Hawking, S.W.: Phys. Rev. D 15, 2752 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  19. Witten, E.: Adv. Theor. Math. Phys. 2, 505 (1998) [hep-th/9803131]

    MathSciNet  MATH  Google Scholar 

  20. Hartle, J.B., Hawking, S.W.: Phys. Rev. D 13, 2188 (1976)

    Article  ADS  Google Scholar 

  21. Balasubramanian, V., Kraus, P.: Commun. Math. Phys. 208, 413 (1999) [arXiv:hep-th/9902121]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Emparan, R., Johnson, C.V., Myers, R.C.: Phys. Rev. D 60, 104001 (1999) [arXiv:hep-th/9903238] [hep-th/9903238]

    Article  MathSciNet  ADS  Google Scholar 

  23. Ashtekar, A., Magnon, A.: Class. Quant. Grav. 1, L39 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  24. Ashtekar, A., Das, S.: Class. Quant. Grav. 17, L17 (2000) [arXiv:hep-th/9911230]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Hawking, S.W., Israel, W. (eds.): General Relativity, An Einstein Centenary Survey. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  26. Hawking, S.W., Page, D.N.: Commun. Math. Phys. 87, 577 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  27. Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions to Einstein’s Equations (2nd edn.) Cambridge University Press, Cambridge (1984)

    Google Scholar 

  28. Weyl, H.: Annalen Physik 54, 117 (1917)

    Article  ADS  MATH  Google Scholar 

  29. Lewis, T.: In: Proceedings of the Royal Society of London A, 136, 176 (1932)

    Google Scholar 

  30. Papapetrou, A.: Ann. Phys. 12, 309 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  31. Papapetrou, A.: Ann. Inst. H. Poincaré A4, 83 (1966)

    Google Scholar 

  32. Belinskii, V.A., Zakharov, V.E.: Sov. Phys. JETP 77, 3

    Google Scholar 

  33. Hoenselaers, C., Kinnersley, W., Xanthopoulos, B.C.: J. Math. Phys. 20, 2530 (1979)

    Article  ADS  Google Scholar 

  34. Charmousis, C., Gregory, R.: Class. Quant. Grav. 21, 527 (2004) [arXiv:gr-qc/0306069]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Emparan, R., Reall, H.S.: Phys. Rev. D 65, 084025 (2002) [arXiv:hep-th/0110258]

    Article  MathSciNet  ADS  Google Scholar 

  36. Israel, W., Khan, K.A.: Nuovo Cim. 33, 331 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  37. Myers, R.C.: Phys. Rev. D 35, 455 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  38. Dowker, H.F., Thambyahpillai, S.N.: Class. Quant. Grav. 20, 127 (2003) [arXiv:gr-qc/0105044]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Ernst, F.J.: Phys. Rev. 167, 1175 (1968)

    Article  ADS  Google Scholar 

  40. Ernst, F.J.: Phys. Rev. 168, 1415 (1968)

    Article  ADS  Google Scholar 

  41. Charmousis, C.: J. Phys. Conf. Ser. 68, 012007 (2007) [arXiv:0710.0472 [gr-qc]]

    Article  ADS  Google Scholar 

  42. Hawking, S.W., Reall, H.S.: Phys. Rev. D 61, 024014 (2000) [arXiv:hep-th/9908109]

    Article  MathSciNet  ADS  Google Scholar 

  43. Cardoso, V., Dias, O.J.C.: Phys. Rev. D 70, 084011 (2004) [arXiv:hep-th/0405006]

    Article  MathSciNet  ADS  Google Scholar 

  44. Myers, R.C., Perry, M.J.: Annals Phys. 172, 304 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Hawking, S.W., Hunter, C.J., Taylor-Robinson, M.M.: Phys. Rev. D 59, 064005 (1999) [hep-th/9811056]

    Article  MathSciNet  ADS  Google Scholar 

  46. Gibbons, G.W., Lu, H., Page, D.N., Pope, C.N.: Phys. Rev. Lett. 93, 171102 (2004), [arXiv:hep-th/0409155]

    Article  ADS  Google Scholar 

  47. Gibbons, G.W., Lu, H., Page, D.N., Pope, C.N.: J. Geom. Phys. 53, 49 (2005) [arXiv:hep-th/0404008]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Caldarelli, M.M., Emparan, R., Rodriguez, M.J.: JHEP 0811, 011 (2008) [arXiv:0806.1954 [hep-th]]

    Article  MathSciNet  ADS  Google Scholar 

  49. Carter, B.: Commun. Math. Phys. 10, 280 (1968)

    MATH  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank Bruno Boisseau, Jeff Dufaux, Renaud Parentani and Kostas Skenderis for helpful comments and discussion. I am especially grateful to Roberto Emparan and Bernard Linet for reading through the manuscript and making numerous helpful and critical comments and corrections. I last but not least thank Jihad Mourad for discussion and explanations regarding properties of adS space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Charmousis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Charmousis, C. (2011). Introduction to Anti de Sitter Black Holes. In: Papantonopoulos, E. (eds) From Gravity to Thermal Gauge Theories: The AdS/CFT Correspondence. Lecture Notes in Physics, vol 828. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04864-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04864-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04863-0

  • Online ISBN: 978-3-642-04864-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics