Skip to main content

Ultra Low Energy Binary Decision Diagram Circuits Using Few Electron Transistors

  • Conference paper
Nano-Net (NanoNet 2009)

Abstract

Novel medical applications involving embedded sensors, require ultra low energy dissipation with low-to-moderate performance (10kHz-100MHz) driving the conventional MOSFETs into sub-threshold operation regime. In this paper, we present an alternate ultra-low power computing architecture using Binary Decision Diagram based logic circuits implemented using Single Electron Transistors (SETs) operating in the Coulomb blockade regime with very low supply voltages. We evaluate the energy – performance tradeoff metrics of such BDD circuits using time domain Monte Carlo simulations and compare them with the energy-optimized CMOS logic circuits. Simulation results show that the proposed approach achieves better energy-delay characteristics than CMOS realizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chandrakasan, A.P., Verma, N., Daly, D.C.: Ultralow-Power Electronics for Biomedical Applications. Annual Review of Biomedical Engineering (August 2008)

    Google Scholar 

  2. Wong, L., Hossain, S., Ta, A., Edvinsson, J., Rivas, D., Naas, H.: A very low-power CMOS mixed-signal IC for implantable pacemaker applications. IEEE J. Solid-State Circuits 39(12), 2446–2456 (2004)

    Article  Google Scholar 

  3. Penders, J., et al.: Human++: from technology to emerging health monitoring concepts. In: Fifth International Summer School and Symposium on Medical Devices and Biosensors, pp. 94–98 (2008)

    Google Scholar 

  4. Shivashankar, G.V., Raychaudhuri, A.K.: Possible observation of coulomb blockade at room temperature. Pramana Journal of Physics 35(5) (November 1990)

    Google Scholar 

  5. Soldatov, E.S., Khanin, V.V., Trifonov, A.S., Gubin, S.P., Kolesov, V.V., Presnov, D.E., Iakovenko, S.A., Khomutov, G.B., Korotkov, A.N.: Room temperature molecular single-electron transistor. PHYS-USP 41(2), 202–204 (1998)

    Article  Google Scholar 

  6. Takahashi, Y., Ono, Y., Fujiwara, A., Inokawa, H.: Silicon single-electron devices and their applications. In: Proceedings. 7th International Conference on Solid-State and Integrated Circuits Technology, October 18-21, vol. 1, pp. 624–629 (2004)

    Google Scholar 

  7. Nakajima, F., Miyoshi, Y., Motohisa, J., Fukui, T.: Single-electron AND/NAND logic circuits based on a self-organized dot network. Appl. Phys. Lett. 83, 2680 (2003)

    Article  Google Scholar 

  8. Miyoshi, Y., Nakajima, F., Motohisa, J., Fukui, T.: A 1 bit binary-decision-diagram adder circuit using single-electron transistors made by selective-area metalorganic vapor-phase epitaxy. Appl. Phys. Lett. 87, 33501 (2005)

    Article  Google Scholar 

  9. Mohisa, J., Nakajima, F., Fukui, T.: Fabrication and low-temperature transport properties of selectively grown dual-gated single-electron transistors. Applied Physics Letters 80 (2002)

    Google Scholar 

  10. Kaizawa, T., Arita, M., Fujiwara, A., Yamazaki, K., Ono, Y., Inokawa, H., Takahashi, Y.: Single-electron device using Si nanodot array and multi-input gates. In: 8th International Conference on Solid-State and Integrated Circuit Technology, October 23-26, pp. 1062–1064 (2006)

    Google Scholar 

  11. Likharev, K.K., Zorin, A.B.: Theory of the Block-Wave Oscillations in Small Josephson Junctions. Journal of Low Temperature Physics 59 (1985)

    Google Scholar 

  12. Averin, D.V., Likharev, K.K.: Coulomb Blockade of Single-Electron Tunneling and Co-herent Oscillations in Small Tunnel Junctions. Journal of Low Temperature Physics 62 (1986)

    Google Scholar 

  13. Grabert, H., Devoret, M.H.: Single Charge Tunneling Coulomb Blockade Phenomena in Nanostructures, ch. 9, pp. 311–332. Plenum Press and NATO Scientific Affairs Division, New York (1992)

    Book  Google Scholar 

  14. Inokawa, H., Takahashi, Y.: A compact analytical model for asymmetric single-electron tunneling transistors. IEEE Transactions on Electron Devices 50(2), 455–461 (2003)

    Article  Google Scholar 

  15. Zhang, F., Tang, R., Kim, Y.-B.: SET-based nano-circuit simulation and design method using HSPICE. Microelectronics Journal 36(8) (August 2005)

    Google Scholar 

  16. Le Royer, C., Le Carval, G., Sanquer, M.: SET Accurate Compact Model for SET-MOSFET Hybrid Circuit Simulation. In: Wachutka, G., Schrag, G. (eds.) Simulation of Semiconductor Processes and Devices 2004. Springer, Wien (2004)

    Google Scholar 

  17. Van De Haar, R., Hoekstra, J.: Simulating SET circuits using SPICE. In: ProRISC - IEEE Workshop, November 2001, pp. 380–385 (2001)

    Google Scholar 

  18. Wasshuber, C., Kosina, H., Selberherr, S.: SIMON-A simulator for single-electron tunnel devices and circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 16(9), 937–944 (1997)

    Article  Google Scholar 

  19. Supriyo Datta: Quantum Transport: Atom to Transistor (2006), http://nanohub.org/resources/1490

  20. Section 1.3 Quantum Transport: Atom to Transistor. Supriyo Datta

    Google Scholar 

  21. Uchida, K., Matsuzawa, K., Toriumi, A.: A New Design for Logic Circuits with Single Electron Transistors. Japan. Journal of Applied Physics 38 (1999)

    Google Scholar 

  22. Jeong, M.-Y., Jeong, Y.-H., Hwang, S.-W., Kim, D.M.: Performance of Single-Electron Transistor Logic Composed of Multi-gate Single-Electron Transistors. Japanese Journal of Applied Physics 36 (Part 1 (11)), 6706–6710

    Google Scholar 

  23. Ono, Y., Inokawa, H., Takahashi, Y.: Binary adders of multigate single-electron transis-tors: specific design using pass-transistor logic. IEEE Transactions on Nanotechnology 1(2), 93–99 (2002)

    Article  Google Scholar 

  24. Amemiya, Y.: Single-Electron Logic Systems Based on a Graphical Representation of Digital Functions. IEICE Transactions on Electronics E89-C(11) (November 2006)

    Google Scholar 

  25. Livermore, C., Crouch, C.H., Westervelt, R.M., Campman, K.L., Gossard, A.C.: The Coulomb Blockade in Coupled Quantum Dots. Science (November 22, 1996)

    Google Scholar 

  26. Matveev, Glazman, Baranger: Coulomb blockade of tunneling through a double quantum dot. Phys. Rev. B (1996)

    Google Scholar 

  27. Wang, A., Chandrakasan, A.P., Kosonocky, S.V.: Optimal supply and threshold scaling for subthreshold CMOS circuits. In: Proceedings of the IEEE Computer Society Annual Symposium on VLSI, pp. 5–9 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Saripalli, V., Narayanan, V., Datta, S. (2009). Ultra Low Energy Binary Decision Diagram Circuits Using Few Electron Transistors. In: Schmid, A., Goel, S., Wang, W., Beiu, V., Carrara, S. (eds) Nano-Net. NanoNet 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04850-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04850-0_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04849-4

  • Online ISBN: 978-3-642-04850-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics