Skip to main content

A Proposal of Efficient Remote Biometric Authentication Protocol

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5824))

Abstract

ZeroBio has been proposed for a secure biometric authentication over the network by conducting secret computing between prover and verifier. The existing ZeroBio are based on zero-knowledge proof that a committed number lies in an interval, or on oblivious neural network evaluation. The purpose of ZeroBio is to give verifier a mean to authenticate provers with perfectly concealing provers’biometric information from verifier. However, these methods need high computational complexity and heavy network traffic. In this paper, we propose another type of ZeroBio protocol that can accomplish remote biometric authentication with lower computational complexity and lighter network traffic by tolerating small decline of security level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ratha, N.K., Connell, J.H., Bolle, R.M.: Enhancing Security and Privacy in Biometrics-based Authentication Systems. IBM Systems Journal 40(3) (2001)

    Google Scholar 

  2. Cambier, J.L., Cahn von Seelen, U., Glass, R., Moore, R., Scott, I., Braithwaite, M., Daugman, J.: Application-Specific Biometric Templates. In: IEEE Workshop on Automatic Identification Advanced Technologies, Tarrytown, NY, March 14-15, 2002, pp. 167–171 (2002)

    Google Scholar 

  3. Hirata, S., Takahashi, K.: Cancelable Biometrics with Perfect Secrecy for Correlation-based Matching. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 875–885. Springer, Heidelberg (2009)

    Google Scholar 

  4. Hill, C.J.: Risk of masquerade arising from the storage of biometrics, Bachelor thesis, Dept. of CS, Australian National University (2002)

    Google Scholar 

  5. Nagai, K., Kikuchi, H., Ogata, W., Nishigaki, M.: ZeroBio - Evaluation and Development of Asymmetric Fingerprint Authentication System Using Oblivious Neural Network Evaluation Protocol. In: Proceedings of 2007 International Conference on Availability, Reliability and Security, pp. 1155–1159 (2007)

    Google Scholar 

  6. Ogata, W., Kikuchi, H., Nishigaki, M.: Zero-knowledge interactive proofs for proving nearness of biometrics and its application. In: Symposium on Information Theory and its Applications, SITA2006, pp. 319–322 (2006)(in Japanese)

    Google Scholar 

  7. Paul, K., Joshua, J., Benjamin, J.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Google Scholar 

  8. Fujisaki, E., Okamoto, T.: Statistical Zero-Knowledge Protocols to Prove Modular Polynomial Relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 413–430. Springer, Heidelberg (1997)

    Google Scholar 

  9. Ogata, W., Kikuchi, H., Nishigaki, M.: Improvement of the biometric authentication system using ZKIP. In: Symposium on Information Theory and its Applications, SITA2007, pp. 689–693 (2007)(in Japanese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sakashita, T. et al. (2009). A Proposal of Efficient Remote Biometric Authentication Protocol. In: Takagi, T., Mambo, M. (eds) Advances in Information and Computer Security. IWSEC 2009. Lecture Notes in Computer Science, vol 5824. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04846-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04846-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04845-6

  • Online ISBN: 978-3-642-04846-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics