The Functionality-Security-Privacy Game

  • Josep Domingo-Ferrer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5861)


Privacy preservation in the information society is in many respects parallel to environment preservation in the physical world. In this way, “green ICT services” are those achieving functionality and security with minimum invasion of the privacy of individuals, where such an invasion can be regarded as a kind of pollution as harmful in the long run to their moral welfare as physical pollution is to their physical welfare. Depending on the type of service, individuals can be users, data owners or respondents having supplied data. We show that the conflict between functionality, security and privacy can be viewed as a game between several players whose interests differ. If the game is properly formulated, its equilibria can lead to protocols conciliating the functionality, security and privacy interests of all players.


Privacy Security Functionality Game theory Mechanism design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Srikant, R.: Privacy preserving data mining. In: Proceedings of the ACM SIGMOD, pp. 439–450 (2000)Google Scholar
  2. 2.
    Barnes, S.B.: A privacy paradox: social networking in the United States. First Monday 11(9) (2006)Google Scholar
  3. 3.
    Blau, J.: Car talk. IEEE Spectrum 45(10), 16Google Scholar
  4. 4.
    Carminati, B., Ferrari, E.: Private relationships in social networks. In: Private Data Management PDM 2007. IEEE Press, Los Alamitos (2007)Google Scholar
  5. 5.
    Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 41–50 (1995)Google Scholar
  6. 6.
    Daza, V., Domingo-Ferrer, J., Sebé, F., Viejo, A.: Trustworthy privacy-preserving car-generated announcements in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology 58(4), 1876–1886 (2009)CrossRefGoogle Scholar
  7. 7.
    Dodis, Y., Rabin, T.: Cryptography and game theory. In: [19], pp. 181–205Google Scholar
  8. 8.
    Domingo-Ferrer, J.: A three-dimensional conceptual framework for database privacy. In: Jonker, W., Petković, M. (eds.) SDM 2007. LNCS, vol. 4721, pp. 193–202. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Domingo-Ferrer, J., Viejo, A., Sebé, F., González-Nicolás, Ú.: Privacy homomorphisms for social networks with private relationships. Computer Networks 52, 3007–3016 (2008)zbMATHCrossRefGoogle Scholar
  10. 10.
    Domingo-Ferrer, J.: A survey of inference control methods for privacy-preserving data mining. In: Aggarwal, C., Yu, P. (eds.) Privacy-Preserving Data Mining: Models and Algorithms. Advances in Database Systems, vol. 34, pp. 53–80. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Domingo-Ferrer, J., Solanas, A., Castellà-Roca, J.: h(k)-Private information retrieval from privacy-uncooperative queryable databases. Online Information Review 33(4), 720–744 (2009)Google Scholar
  12. 12.
    Domingo-Ferrer, J., Bras-Amorós, M., Wu, Q., Manjón, J.: User-private information retrieval based on a peer-to-peer community. Data and Knowledge Engineering (in press, available online doi:10.1016/j.datak.2009.06.004)Google Scholar
  13. 13.
    Howe, D.C., Nissenbaum, H.: TrackMeNot: Resisting surveillance in web search. In: Lessons from the Identity Trail: Anonymity, Privacy and Identity in a Networked Society, pp. 409–428. Oxford University Press, Oxford (2009)Google Scholar
  14. 14.
    Hundepool, A., Domingo-Ferrer, J., Franconi, L., Giessing, S., Lenz, R., Longhurst, J., Schulte-Nordholt, E., Seri, G., DeWolf, P.-P.: Handbook on Statistical Disclosure Control (version 1.0), Eurostat (CENEX SDC Project Deliverable) (2006)Google Scholar
  15. 15.
    Hutt, R., Omand, D.: Anti-terror fight will need privacy sacrifice. In: The Independent, February 25 (2009)Google Scholar
  16. 16.
    Lin, X., Sun, X., Ho, P.H., Shen, X.: GSIS: A secure and privacy preserving protocol for vehicular communications. IEEE Transactions on Vehicular Communications 56(6), 3442–3456 (2007)CrossRefGoogle Scholar
  17. 17.
    Lindell, Y., Pinkas, B.: Privacy-preserving data mining. Journal of Cryptology 15(3), 177–206 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Mackey, E.: A Framework for Understanding Statistical Disclosure Processes, Ph. D. Thesis, University of Manchester (2009)Google Scholar
  19. 19.
    Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  20. 20.
    Raya, M., Aziz, A., Hubaux, J.-P.: Efficient secure aggregation in VANETs. In: Proc. of 3rd Intl. Workshop on Vehicular Ad Hoc Networks-VANET, pp. 67–75.Google Scholar
  21. 21.
    Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, Cambridge (2009)zbMATHGoogle Scholar
  22. 22.
    Tardos, É., Vazirani, V.V.: Basic solution concepts and computational issues. In: [19], pp. 3–28Google Scholar
  23. 23.
    Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)zbMATHGoogle Scholar
  24. 24.
    The Wall Street Journal, 34 (December 1, 2005)Google Scholar
  25. 25.
    Wu, Q., Domingo-Ferrer, J., González-Nicolás, Ú.: Balanced trustworthiness, safety and privacy in vehicle-to-vehicle communications (manuscript, 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Josep Domingo-Ferrer
    • 1
  1. 1.Dept. of Computer Engineering and Mathematics, UNESCO Chair in Data PrivacyUniversitat Rovira i VirgiliTarragonaCatalonia

Personalised recommendations