A Formal Theory of Cooperative TU-Games

  • Marc Daumas
  • Érik Martin-Dorel
  • Annick Truffert
  • Michel Ventou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5861)


Results of game theory are often the keys to decisions of economical and political executives. They are also used to create internal tools of many decision making software. For example, coordination games may be cooperative games, when the players choose the strategies by a consensus decision making process, and game trees are used to represent some key cooperative games. Our theory of cooperative games with transferable utilities makes it possible to deliver a formal certificate that contains statements and proofs with each result of any procedure in theory of cooperative TU-games. Such formal certificates can be archived and audited by independent experts to guarantee that the process that lead to the decision is sound and pertaining. As we use an automated proof checker, the review only has to guarantee that the statements of the certificate are correct. The proofs contained in the certificate are guaranteed automatically by the proof checker and our formal theory.


formalization cooperative games automated proof checker 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarts, H., Driessen, T.: The irreducible core of a minimum cost spanning tree game. Mathematical Methods of Operations Research 38(2), 163–174 (1993), zbMATHCrossRefMathSciNetGoogle Scholar
  2. Bird, C.G.: On cost allocation for a spanning tree: A game theoretic approach. Networks 6(4), 335–350 (1976), zbMATHCrossRefMathSciNetGoogle Scholar
  3. Bondareva, O.N.: Some applications of linear programming methods to the theory of cooperative games. Problemy kibernetiki 10, 119–139 (1963) (Russian)MathSciNetGoogle Scholar
  4. Daumas, M., Lester, D., Martin-Dorel, É., Truffert, A.: Stochastic formal correctness of numerical algorithms. In: NASA Formal Methods Symposium, pp. 136–145 (2009a),
  5. Daumas, M., Lester, D., Muñoz, C.: Verified real number calculations: A library for interval arithmetic. IEEE Transactions on Computers 58(2), 226–237 (2009b), CrossRefGoogle Scholar
  6. Daumas, M., Martin-Dorel, É., Truffert, A.: Bornes quasi-certaines sur l’accumulation d’erreurs infimes dans les systèmes hybrides. In: MAnifestation des JEunes Chercheurs en Sciences et Technologies de l’Information et de la Communication, Avignon, France (2009c)Google Scholar
  7. Davis, M., Maschler, M.: The kernel of a cooperative game. Naval Research Logistic Quarterly 12(3), 223–259 (1965), zbMATHCrossRefMathSciNetGoogle Scholar
  8. Driessen, T.S.H.: A new characterization of the Shapley-value. Methods of Operations Research 50, 505–517 (1985)zbMATHMathSciNetGoogle Scholar
  9. Fougères, A., Truffert, A., Ventou, M.: Dualité probabiliste des jeux coopératifs : la stabilité comme principe d’équilibre, détermination algorithmique du nucleolus. Documents de travail 99A19, Groupement de Recherche en Economie Quantitative d’Aix Marseille (1999),; Travaux présentés aux journées du LEA (Jeux Coopératifs, Agrégation et Optimisation)
  10. Fougères, A., Truffert, A., Ventou, M.: Minimal core generation. Technical Report 00A27, Groupement de Recherche en Economie Quantitative d’Aix Marseille (2000a),; Work presented at the First World Congress of the Game Theory, Bilbao (2000)
  11. Fougères, A., Truffert, A., Ventou, M.: The core revisited: conditional cores and leader coalitions. Technical Report 00A28, Groupement de Recherche en Economie Quantitative d’Aix Marseille (2000b),; Work presented at the workshop on coalition formation, Barcelona (2000)
  12. Gillies, D.B.: Some theorems on n-person games. PhD thesis, Princeton University (1953)Google Scholar
  13. Gonthier, G., Mahboubi, A.: A small scale reflection extension for the Coq system. Research Report 6455, Institut National de Recherche en Informatique et en Automatique, Le Chesnay, France (2008),
  14. Granot, D., Huberman, G.: On minimum cost spanning tree games. Mathematical Programming 21(1), 1–18 (1981), zbMATHCrossRefMathSciNetGoogle Scholar
  15. Huet, G., Kahn, G., Paulin-Mohring, C.: The Coq proof assistant: a tutorial: version 8.0 (2004),
  16. Kern, W., Paulusna, D.: Matching game: the least core and the nucleolus. Mathematics of Operations Research 28(2), 294–308 (2003), zbMATHCrossRefMathSciNetGoogle Scholar
  17. Maschler, M., Peleg, B., Shapley, L.S.: The kernel and bargaining set for convex games. International Journal of Game Theory 1(1), 73–93 (1971), zbMATHCrossRefMathSciNetGoogle Scholar
  18. Maschler, M., Peleg, B., Shapley, L.S.: Geometric properties of the kernel, nucleolus, and related solution concepts. Mathematics of Operations Research 4(4), 303–338 (1979), zbMATHCrossRefMathSciNetGoogle Scholar
  19. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992), Google Scholar
  20. Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS Language Reference. In: SRI International, Version 2.4 (2001),
  21. Potters, J.A.M.: An axiomatization of the nucleolus. International Journal of Game Theory 19(4), 365–373 (1991), zbMATHCrossRefMathSciNetGoogle Scholar
  22. Schmeidler, D.: The nucleolus of a characteristic function game. SIAM Journal of Applied Mathematics 17(6), 1163–1170 (1969), zbMATHCrossRefMathSciNetGoogle Scholar
  23. Shapley, L.S.: A value for n-person games. In: Contributions to the Theory of Games II, pp. 307–317. Princeton University Press, Princeton (1953)Google Scholar
  24. Shapley, L.S.: On balanced sets and cores. Naval Research Logistic Quarterly 14(4), 453–460 (1967), CrossRefGoogle Scholar
  25. Shapley, L.S., Shubik, M.: The assignment game: the core. International Journal of Game Theory 1(1), 111–130 (1971), zbMATHCrossRefMathSciNetGoogle Scholar
  26. Snijders, C.: Axiomatization of the nucleolus. Mathematics of Operation Research 20(1), 189–196 (1995), zbMATHCrossRefMathSciNetGoogle Scholar
  27. Sobolev, A.I.: The characterization of optimality principles in cooperative games by functional equations. Mathematical Methods in Social Sciences 6, 94–151 (1975) (Russian)Google Scholar
  28. Sudhölter, P., Peleg, B.: A note on an axiomatization of the core of market games. Mathematics of Operations Research 27(2), 441–444 (2002), zbMATHCrossRefMathSciNetGoogle Scholar
  29. Sudhölter, P., Peleg, B.: Nucleoli as maximizers of collective satisfaction functions. Social Choice and Welfare 15(3), 383–411 (1998), CrossRefMathSciNetGoogle Scholar
  30. Sudhölter, P., Potters, J.A.M.: The semireactive bargaining set of a cooperative game. International Journal of Game Theory 30(1), 117–139 (2001), zbMATHCrossRefMathSciNetGoogle Scholar
  31. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marc Daumas
    • 1
  • Érik Martin-Dorel
    • 1
    • 2
  • Annick Truffert
    • 2
  • Michel Ventou
    • 2
  1. 1.ELIAUS (EA 3679 UPVD)Université de PerpignanPerpignanFrance
  2. 2.LAMPS (EA 4217 UPVD)Université de PerpignanPerpignanFrance

Personalised recommendations