Advertisement

A Lyapunov-Type Theorem for Nonadditive Vector Measures

  • Nobusumi Sagara
Conference paper
  • 634 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5861)

Abstract

We prove the convexity and compactness of the closure of the lower partition range of an ℝ n -valued, nonatomic, supermodular capacity, employing a useful relationship between convex games and their Choquet integrals. The main result is applied to fair division problems, and the existence of Pareto optimal α-fair partitions is demonstrated for the case of nonadditive measures.

Keywords

Nonatomic vector measure Lyapunov’s convexity theorem Capacity Supermodularity Choquet integral Convex game Core Fair division 

MSC 2000

Primary: 28B05 28E10 secondary: 91A12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akin, E.: Vilfred Pareto cuts the cake. J. Math. Econom. 24, 23–44 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Choquet, G.: Theory of capacities. Ann. Inst. Fourier (Grenoble) 5, 131–295 (1955)MathSciNetGoogle Scholar
  3. 3.
    Delbaen, F.: Convex games and extreme points. J. Math. Anal. Appl. 45, 210–233 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dubins, L.E., Spanier, E.H.: How to cut a cake fairly. Amer. Math. Monthly 68, 1–17 (1961)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dvoretsky, A., Wald, A., Wolfowitz, J.: Relations among certain ranges of vector measures. Pacific. J. Math. 1, 59–74 (1951)MathSciNetGoogle Scholar
  6. 6.
    Dunford, N., Schwartz, J.T.: Linear Operators, Part I: General Theory. John Wiley & Sons, New York (1958)Google Scholar
  7. 7.
    Gouweleeuw, J.: A characterization of vector measures with convex range. Proc. London Math. Soc. 70, 336–362 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Halmos, P.R.: The range of a vector measure. Bull. Amer. Math. Soc. 54, 416–421 (1948)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kelley, J.L.: Measures on Boolean algebras. Pacific. J. Math. 9, 1165–1177 (1959)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Lyapunov, A.: Sur les fonctions-vecteurs complètement additives. Bull. Acad. Sci. URSS. Sér. Math. 4, 465–478 (1940) (in Russian)zbMATHGoogle Scholar
  11. 11.
    Lindenstrauss, J.: A short proof of Lyapunov’s convexity theorem. J. Math. Mech. 15, 971–972 (1966)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Marinacci, M., Montrucchio, L.: Introduction to the mathematics of ambiguity. In: Gilboa, I. (ed.) Uncertainty in Economic Theory, pp. 46–107. Routledge, New York (2004)Google Scholar
  13. 13.
    Pap, E.: Null-Additive Set Functions. Kluwer Academic Publishers, Dordrecht (1995)zbMATHGoogle Scholar
  14. 14.
    Sagara, N.: Fair division problems with nonadditive evaluations: Existence of solutions and representation of preference orderings. Faculty of Economics, Hosei University, mimeo (2009), http://home.v00.itscom.net/nsagara/
  15. 15.
    Sagara, N., Vlach, M.: Representation of preference relations on σ-algebras of nonatomic measure spaces: Convexity and continuity. Fuzzy Sets and Systems 160, 624–634 (2009)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Sagara, N., Vlach, M.: Convexity of the lower partition range of a concave vector measure. Faculty of Economics, Hosei University, mimeo. (2009), http://home.v00.itscom.net/nsagara/
  17. 17.
    Schmeidler, D.: Cores of exact games, I. J. Math. Anal. Appl. 40, 214–225 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Schmeidler, D.: Integral representation without additivity. Proc. Amer. Math. Soc. 97, 255–261 (1986)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nobusumi Sagara
    • 1
  1. 1.Faculty of EconomicsHosei UniversityTokyoJapan

Personalised recommendations