Advertisement

The Relationship between Interval, Fuzzy and Possibilistic Optimization

  • Weldon A. Lodwick
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5861)

Abstract

The relationship between fuzzy set theory (in particular fuzzy arithmetic) and interval analysis is well-know. This study explores the interconnections between interval analysis, fuzzy interval analysis, and interval and fuzzy/possibilistic optimization. Two key ideas are considered herein: (1) constraint set computation and (2) the clear distinctions and relationships between interval, fuzzy, and possibilistic entities as they are used in optimization within an historical and taxonomic context. Constraint fuzzy interval arithmetic is used to compute constraint sets.

Keywords

Fuzzy optimization possibilistic optimization interval analysis constraint fuzzy interval arithmetic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dubois, D.: Fuzzy interval analysis. In: Dubois, D., Prade, H. (eds.) Fundamentals of Fuzzy Sets, ch. 10, pp. 483–581. Kluwer Academic Press, Dordrecht (2000)Google Scholar
  2. 2.
    Dubois, D., Nguyen, H., Prade, H.: Possibility theory, probability theory, and fuzzy sets: Misunderstanding, bridges and gaps. In: Dubois, D., Prade, H. (eds.) Fundamentals of Fuzzy Sets, ch. 7, pp. 343–438. Kluwer Academic Press, Dordrecht (2000)Google Scholar
  3. 3.
    Gay, D.M.: Solving linear interval equations. SIAM Journal on Numerical Analysis 19(4), 858–870 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Greenberg, H.: Personal communicationGoogle Scholar
  5. 5.
    Lodwick, W.A.: Analysis of structure in fuzzy linear programs. Fuzzy Sets and Systems 38, 15–26 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Lodwick, W.A.: Constrained Interval Arithmetic. CCM Report 138 (February 1999)Google Scholar
  7. 7.
    Lodwick, W.A.: Interval and fuzzy analysis: An unified approach. In: Hawkes, P.W. (ed.) Advances in Imagining and Electronic Physics, vol. 148, pp. 75–192. Elsevier Press, Amsterdam (2007)Google Scholar
  8. 8.
    Lodwick, W.A., Jamison, K.D.: Theory and semantics for fuzzy and possibilistic optimization. Fuzzy Sets and Systems 158(17), 1861–1871 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lodwick, W.A., Untiedt, E.: A Comparison of Interval Analysis Using Constraint Interval Arithmetic and Fuzzy Interval Analysis Using Gradual Numbers. In: NAFIPS Conference Proceedings (2008)Google Scholar
  10. 10.
    Lodwick, W.A.: Fundamentals of interval analysis and linkages to fuzzy set theory. In: Pedrycz, W., Skowron, A., Kreinovich, V. (eds.) Handbook of Granular Computing, pp. 55–79. John Wiley, West Sussex (2008)CrossRefGoogle Scholar
  11. 11.
    Lodwick, W.A., Untiedt, E.: Fuzzy optimization. In: Kacprzyk, J. (ed.) Encyclopedia of Complexity and System Science. Springer, Heidelberg (2009)Google Scholar
  12. 12.
    Lodwick, W.A.: What is fuzzy and possibilistic optimization? In: Lodwick, W.A., Kacprzyk, J. (eds.) Fuzzy Optimization: Recent Developments and Applications, ch. 1, Springer, Heidelberg (to be published, 2009)Google Scholar
  13. 13.
    Negoita, C.V.: The current interest in fuzzy optimization. Fuzzy Sets and Systems 6, 261–269 (1982)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Orlovsky, S.A.: On formalization of a general fuzzy mathematical problem. Fuzzy Sets and Systems 3, 311–321 (1980)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Weldon A. Lodwick
    • 1
  1. 1.Department of Mathematical and Statistical SciencesUniversity of Colorado DenverDenverU.S.A.

Personalised recommendations