A Hybrid Algorithm Based on Tabu Search and Ant Colony Optimization for k-Minimum Spanning Tree Problems

  • Hideki Katagiri
  • Tomohiro Hayashida
  • Ichiro Nishizaki
  • Jun Ishimatsu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5861)


This paper considers an efficient approximate algorithm for solving k-minimum spanning tree problems which is one of the combinatorial optimization in networks. A new hybrid algorithm based on tabu search and ant colony optimization is provided. Results of numerical experiments show that the proposed method updates some of the best known values and that the proposed method provides a relatively better performance with solution accuracy over existing algorithms.


k-minimum spanning tree tabu search ant colony optimization hybrid algorithm approximate solution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blum, C., Blesa, M.J.: New metaheuristic approaches for the edge-weighted k-cardinality tree problem. Computers & Operations Research 32, 1355–1377 (2005)CrossRefGoogle Scholar
  2. 2.
    Börndorfer, R., Ferreira, C., Martin, A.: Matrix decomposition by branch- and-cut. Technical Report, Konrad-Zuse-Zentrum für Informationstechnik, Berlin (1997)Google Scholar
  3. 3.
    Börndorfer, R., Ferreira, C., Martin, A.: Decomposing matrices into blocks. SIAM Journal on Optimization 9(1), 236–269 (1998)CrossRefGoogle Scholar
  4. 4.
    Cheung, S.Y., Kumar, A.: Efficient quorum-cast routing algorithms. In: Proceedings of INFOCOM. IEEE Society Press, Los Alamitos (1994)Google Scholar
  5. 5.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Transactionson Systems, Man and Cybernetics: Part B 26(1), 29–41 (1996)CrossRefGoogle Scholar
  6. 6.
    Dorigo, M., Gambardella, L.M.: Ant Colony System: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)CrossRefGoogle Scholar
  7. 7.
    Fischetti, M., Hamacher, H.W., Jörnsten, K., Maffioli, F.: Weighted k-cardinality trees: complexity and polyhedral structure. Networks 24, 11–21 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Foulds, L.R., Hamacher, H.W., Wilson, J.: Integer programming approaches to facilities layout models with forbidden areas. Annals of Operations Research 81, 405–417 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Freitag, J.: Minimal k-cardinality trees, Master thesis, Department of Mathematics, University of Kaiserslautern, Germany (1993)Google Scholar
  10. 10.
    Garg, N., Hochbaum, D.: An O(logk) approximation algorithm for the k minimum spanning tree problem in the plane. Algorithmica 18(1), 111–121 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht (1997)zbMATHGoogle Scholar
  12. 12.
    Hamacher, H.W., Jörnsten, K., Maffioli, F.: Weighted k-cardinality trees. Technical Report 91.023, Politecnico di Milano, Dipartimento di Elettronica, Italy (1991)Google Scholar
  13. 13.
    Jörnsten, J., Løkketangen, A.: Tabu search for weighted k-cardinality trees. Asia-Pacific Journal of Operational Research 14(2), 9–26 (1997)zbMATHMathSciNetGoogle Scholar
  14. 14.
  15. 15.
    Marathe, M.V., Ravi, R., Ravi, S.S., Rosenkrantz, D.J., Sundaram, R.: Spanning trees short or small. SIAM Journal on Discrete Mathematics 9(2), 178–200 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Philpott, A.B., Wormald, N.C.: On the optimal extraction of ore from an open-cast mine. University of Auckland, New Zealand (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hideki Katagiri
    • 1
  • Tomohiro Hayashida
    • 1
  • Ichiro Nishizaki
    • 1
  • Jun Ishimatsu
    • 1
  1. 1.Graduate School of EngineeringHiroshima UniversityJapan

Personalised recommendations