Discounting and Combination Scheme in Evidence Theory for Dealing with Conflict in Information Fusion

  • Van-Nam Huynh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5861)


Recently combination rules as well as the issue of conflict management in Dempster-Shafer theory have received considerable attention in information fusion research. Mostly these studies considered the combined mass assigned to the empty set as the conflict and have tried to provide alternatives to Dempster’s rule of combination, which mainly differ in the way of how to manage the conflict. In this paper, we introduce a hybrid measure to judge the difference between two bodies of evidence as a basis for conflict analysis, and argue that using the combined mass assigned to the empty set as a whole to quantify conflict seems inappropriate. We then propose to use the discounting operator in association with the combination operator to resolve conflict when combining evidence, in which the discount rate of a basic probability assignment is defined using the entropy of its corresponding pignistic probability function. Finally, an application of this discounting and combination scheme to fusion of decisions in classifier combination is demonstrated.


Support Vector Machine Discount Rate Combination Scheme Combination Rule Belief Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agirre, E., Edmonds, P. (eds.): Word Sense Disambiguation: Algorithms and Applications. Springer, Dordrecht (2006)Google Scholar
  2. 2.
    Al-Ani, A., Deriche, M.: A new technique for combining multiple classifiers using the Dempster–Shafer theory of evidence. J. Artif. Intell. Res. 17, 333–361 (2002)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Bell, D., Guan, J.W., Bi, Y.: On combining classifiers mass functions for text categorization. IEEE Trans. Know. Data Eng. 17, 1307–1319 (2005)CrossRefGoogle Scholar
  4. 4.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines (2001),
  5. 5.
    Delmotte, F., Smets, P.: Target identification based on the Transferable Belief Model interpretation of Dempster-Shafer model. IEEE Trans. Syst., Man, Cybern. A 34, 457–471 (2004)CrossRefGoogle Scholar
  6. 6.
    Dempster, A.P.: Upper and lower probabilities induced by a multi-valued mapping. Ann. Math. Stat. 38, 325–339 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Denoeux, T.: A neural network classifier based on Dempster-Shafer theory. IEEE Trans. Syst., Man, Cybern. A 30, 131–150 (2000)CrossRefGoogle Scholar
  8. 8.
    Denoeux, T.: A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. Syst., Man, Cybern. 25, 804–813 (1995)CrossRefGoogle Scholar
  9. 9.
    Denoeux, T.: Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence. Artif. Intell. 172, 234–264 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dubois, D., Prade, H.: Representation and combination of uncertainty with belief functions and possibility measures. Comput. Intell. 4, 244–264 (1988)CrossRefGoogle Scholar
  11. 11.
    Grozea, C.: Finding optimal parameter settings for high performance word sense disambiguation. In: Proc. of ACL/SIGLEX Senseval-3, Barcelona, Spain, July 2004, pp. 125–128 (2004)Google Scholar
  12. 12.
    Ide, N., Véronis, J.: Introduction to the special issue on word sense disambiguation: The state of the art. Comput. Ling. 24, 1–40 (1998)Google Scholar
  13. 13.
    Josang, A.: The consensus operator for combining beliefs. Artif. Intell. 141, 157–170 (2002)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Jousselme, A.L., Liu, C., Grenier, D., Bosse, E.: Measuring ambiguity in the evidence theory. IEEE Trans. Syst., Man, Cybern. A 36, 890–903 (2006)CrossRefGoogle Scholar
  15. 15.
    Kilgarriff, A.: English lexical sample task description. In: Proc. of Senseval-2: Second Inter. Workshop on Evaluating Word Sense Disambiguation Syst., Toulouse, France, pp. 17–20 (2001)Google Scholar
  16. 16.
    Melamed, I.D., Resnik, P.: Tagger evaluation given hierarchical tag sets. Comp. and The Human. 34(1-2), 79–84 (2000)CrossRefGoogle Scholar
  17. 17.
    Mihalcea, R., Chklovski, T., Killgariff, A.: The Senseval-3 English lexical sample task. In: Proc. of ACL/SIGLEX Senseval-3, Barcelona, Spain, July 2004, pp. 25–28 (2004)Google Scholar
  18. 18.
    Huynh, V.-N., Nguyen, T.T., Le, C.A.: Adaptively entropy-based weighting classifiers in combination using Dempster-Shafer theory for word sense disambiguation. Comp. Speech Lang. (to appear)Google Scholar
  19. 19.
    Le, C.A., Huynh, V.-N., Shimazu, A., Nakamori, Y.: Combining classifiers for word sense disambiguation based on Dempster-Shafer theory and OWA operators. Data Know. Eng. 63, 381–396 (2007)CrossRefGoogle Scholar
  20. 20.
    Lee, Y.K., Ng, H.T.: An empirical evaluation of knowledge sources and learning algorithms for word sense disambiguation. In: Proc. of EMNLP, pp. 41–48 (2002)Google Scholar
  21. 21.
    Lefevre, E., Colot, O., Vannoorenberghe, P.: Belief function combination and conflict management. Infor. Fusion 3, 149–162 (2002)CrossRefGoogle Scholar
  22. 22.
    Lin, H.-T., Lin, C.-J., Weng, R.C.: A note on Platt’s probabilistic outputs for support vector machines. Mach. Learn. 68, 267–276 (2007)CrossRefGoogle Scholar
  23. 23.
    Haenni, R.: Are alternatives to Dempster’s rule of combination alternatives? Infor. Fusion 3, 237–241 (2002)CrossRefGoogle Scholar
  24. 24.
    Haenni, R.: Shedding new light on Zadeh’s criticism of Dempster’s rule of combination. In: FUSION 2005, 8th Inter. Conf. on Infor. Fusion, pp. 879–884 (2005)Google Scholar
  25. 25.
    Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Trans. Patt. Anal. Mach. Intell. 20, 226–239 (1998)CrossRefGoogle Scholar
  26. 26.
    Liu, W.: Analysing the degree of conflict among belief functions. Artif. Intell. 170, 909–924 (2006)zbMATHCrossRefGoogle Scholar
  27. 27.
    Murphy, C.: Combining belief functions when evidence conflicts. Dec. Sup. Syst. 29, 1–9 (2000)CrossRefGoogle Scholar
  28. 28.
    Platt, J.: Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In: Smola, A., Bartlett, P., Schölkopf, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers. MIT Press, Cambridge (2000)Google Scholar
  29. 29.
    Rogova, G.: Combining the results of several neural network classifiers. Neural Networks 7, 777–781 (1994)CrossRefGoogle Scholar
  30. 30.
    Ruspini, E.H., Lowrance, J.D., Strat, T.M.: Understanding evidential reasoning. Inter. J. Approx. Reason. 6, 401–424 (1992)zbMATHCrossRefGoogle Scholar
  31. 31.
    Safranek, R.J., Gottschlich, S., Kak, A.C.: Evidence accumulation using binary frames of discerment for verification vision. IEEE Trans. Robot. Autom. 6, 405–417 (1990)CrossRefGoogle Scholar
  32. 32.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  33. 33.
    Smets, P.: The combination of evidence in the transferable belief model. IEEE Trans. Patt. Anal. Mach. Intell. 12, 447–458 (1990)CrossRefGoogle Scholar
  34. 34.
    Smets, P., Kennes, R.: The transferable belief model. Artif. Intell. 66, 191–234 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Smets, P.: Decision making in the TBM: the necessity of the pignistic transformation. Inter. J. Approx. Reason. 38, 133–147 (2004)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Smets, P.: Analyzing the combination of conflicting belief functions. Infor. Fusion 8, 387–412 (2007)CrossRefGoogle Scholar
  37. 37.
    Tsuruoka, Y.: A simple C++ library for maximum entropy classification (2006),
  38. 38.
    Xu, L., Krzyzak, A., Suen, C.Y.: Several methods for combining multiple classifiers and their applications in handwritten character recognition. IEEE Trans. Syst., Man, Cybern. 22, 418–435 (1992)CrossRefGoogle Scholar
  39. 39.
    Yager, R.R.: On the Dempster-Shafer framework and new combination rules. Infor. Sci. 41, 93–138 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Yarowsky, D., Cucerzan, S., Florian, R., Schafer, C., Wicentowski, R.: The Johns Hopkins Senseval2 system descriptions. In: Proc. of SENSEVAL2, pp. 163–166 (2001)Google Scholar
  41. 41.
    Zadeh, L.A.: Reviews of Books: A Mathematical Theory of Evidence. AI Magazine 5, 81–83 (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Van-Nam Huynh
    • 1
  1. 1.School of Knowledge ScienceJapan Advanced Institute of Science and TechnologyIshikawaJapan

Personalised recommendations