g-BDI: A Graded Intensional Agent Model for Practical Reasoning

  • Ana Casali
  • Lluís Godo
  • Carles Sierra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5861)


In intentional agents, actions are derived from the mental attitudes and their relationships. In particular, preferences (positive desires) and restrictions (negative desires) are important proactive attitudes which guide agents to intentions and eventually to actions. In this paper we overview recent developments about a multi-context based agent architecture g-BDI to represent and reasoning about gradual notions of desires and intentions, including sound and complete logical formalizations. We also show that the framework is expressive enough to describe how desires, together with other information, can lead agents to intentions and finally to actions. As a case-study, we will also describe the design and implementation of recommender system on tourism as well as the results of some experiments concerning the flexibility and performance of the g-BDI model.


Recommender System Kripke Structure Belief Degree Tourist Package Feasible Plan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Bipolar representation and fusion of preferences in the possilistic Logic framework. In: Proceedings of the 8th International Conference on Principle of Knowledge Representation and Reasoning (KR 2002), pp. 421–448 (2002)Google Scholar
  2. 2.
    Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Bipolar possibility theory in preference modeling: Representation, fusion and optimal solutions. Information Fusion 7, 135–150 (2006)Google Scholar
  3. 3.
    Casali, A.: On Intensional and social agents with graded attitudes. Ph.D. Dissertation. University of Girona, Spain (December 2008)Google Scholar
  4. 4.
    Casali, A., Godo, L., Sierra, C.: Graded BDI Models For Agent Architectures. In: Leite, J., Torroni, P. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3487, pp. 126–143. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Casali, A., Godo, L., Sierra, C.: Modelling Travel Assistant Agents: a graded BDI Approach. In: Bramer, M. (ed.) Proceedings of the IFIP-AI, WCC, Artificial Intelligence in Theory and Practice, vol. 217, pp. 415–424. Springer, Heidelberg (2006)Google Scholar
  6. 6.
    Casali, A., Godo, L., Sierra, C.: A Logical Framework to Represent and Reason about Graded Preferences and Intentions. In: Brewka, G., Lang, J. (eds.) Proceedings of the 11th International Conference on Principles of Knowledge Representation and Reasoning, KR 2008, pp. 27–37. The AAAI Press, Menlo Park (2008)Google Scholar
  7. 7.
    Casali, A., Godo, L., Sierra, C.: Validation and Experimentation of a Tourism Recommender Agent based on a Graded BDI Model. In: Alsinet, T., et al. (eds.) Artificial Intelligence Research and Developement. Series: Frontiers in Artificial Intelligence and Applications, vol. 184, pp. 41–50. IOS Press, Amsterdam (2008)Google Scholar
  8. 8.
    Casali, A., Godo, L., Sierra, C.: A Tourism Recommender Agent: From theory to practice. Inteligencia Articial 40, 23–38 (2008)Google Scholar
  9. 9.
    Georgeff, M., Pell, B., Pollack, M., Tambe, M., Wooldridge, M.: The Belief-Desire-Intention Model of Agency. In: Rao, A.S., Singh, M.P., Müller, J.P. (eds.) ATAL 1998. LNCS (LNAI), vol. 1555. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Giunchiglia, F., Serafini, L.: Multilanguage Hierarchical Logics (or: How we can do without modal logics). In: Artificial Intelligence, vol. 65, pp. 29–70 (1994)Google Scholar
  11. 11.
    Godo, L., Esteva, F., Hájek, P.: Reasoning about probabilities using fuzzy logic. Neural Network World 10, 811–824 (2000)Google Scholar
  12. 12.
    Hájek, P.: Metamatematics of Fuzzy Logic. In: Trends in Logic, vol. 4. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  13. 13.
    Hájek, P., Godo, L., Esteva, F.: Fuzzy logic and probabitity. In: Proc. of the International Conference on Uncertainty in Artificial Intelligence (UAI 1995), Montreal, Canada, pp. 237–244 (1995)Google Scholar
  14. 14.
    Meyer, J.J.: Dynamic Logic for Reasoning about Actions and Agents. In: Minker, J. (ed.) Logic-based artificial intelligence, pp. 281–311. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  15. 15.
    Parsons, S., Sierra, C., Jennings, N.R.: Agents that reason and negociate by arguing. Journal of Logic and Computation 8(3), 261–292 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Rao, A., Georgeff, M.: BDI Agents: from Theory to Practice. In: Proc. of the 1st International Conference on Multi-Agents Systems, pp. 312–319 (1995)Google Scholar
  17. 17.
    Rahwan, I., Amgoud, L.: An Argumentation based Approach for Practical Reasoning. In: Proceedings of the 5th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2006), pp. 347–354 (2006)Google Scholar
  18. 18.
    Rotstein, N.D., García, A.J., Simari, G.R.: Reasoning from Desires to Intentions: A Dialectical Framework. In: Twenty-Second AAAI Conference on Artificial Intelligence (AAAI 2007), Vancouver, BC, Canada, pp. 136–141 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ana Casali
    • 1
  • Lluís Godo
    • 2
  • Carles Sierra
    • 2
  1. 1.Dept. of Computer ScienceUniversidad Nacional de Rosario (UNR), Centro Intl. Franco-Argentino de Ciencias de la Información y de Sistemas (CIFASIS)RosarioArgentine
  2. 2.Institut d‘Investigació en Intel·ligència Artificial (IIIA) - CSICBellaterraSpain

Personalised recommendations