Advertisement

Combining Various Methods of Automated User Decision and Preferences Modelling

  • Alan Eckhardt
  • Peter Vojtáš
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5861)

Abstract

In this paper we present a proposal of a system that combines various methods of user modelling. This system may find its application in e-commerce, recommender systems, etc. The main focus of this paper is on automatic methods that require only a small amount of data from user. The different ways of integration of user models are studied. A proof-of-concept implementation is compared to standard methods in an initial experiment with artificial user data...

Keywords

user preferences learning recommender systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eckhardt, A.: Inductive models of user preferences for semantic web. In: Pokorný, J., Snášel, V., Richta, K. (eds.) DATESO 2007. CEUR Workshop Proceedings, vol. 235, pp. 108–119. Matfyz Press, Praha (2007)Google Scholar
  2. 2.
    Eckhardt, A., Horváth, T., Maruščák, D., Novotný, R., Vojtáš, P.: Uncertainty issues in automating process connecting web and user. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327, pp. 207–223. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992)CrossRefGoogle Scholar
  4. 4.
    Shardanand, U., Maes, P.: Social information filtering: algorithms for automating “word of mouth”. In: CHI 1995: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 210–217. ACM Press/Addison-Wesley Publishing Co. (1995)Google Scholar
  5. 5.
    Ko, S.J., Lee, J.H.: User preference mining through collaborative filtering and content based filtering in recommender system. In: Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, pp. 244–253. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Andrejko, A., Barla, M., Bieliková, M., Tvarozek, M.: User characteristics acquisition from logs with semantics. In: Zendulka, J. (ed.) ISIM. CEUR Workshop Proceedings, CEUR-WS.org, vol. 252 (2007)Google Scholar
  7. 7.
    Joachims, T.: Optimizing search engines using clickthrough data. In: KDD 2002: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 133–142. ACM Press, New York (2002)CrossRefGoogle Scholar
  8. 8.
    Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Accurately interpreting clickthrough data as implicit feedback. In: SIGIR 2005: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 154–161. ACM, New York (2005)CrossRefGoogle Scholar
  9. 9.
    Schafer, B.J., Konstan, J.A., Riedi, J.: Recommender systems in e-commerce. In: ACM Conference on Electronic Commerce, pp. 158–166 (1999)Google Scholar
  10. 10.
    Lee, D.H., Brusilovsky, P.: Fighting information overflow with personalized comprehensive information access: A proactive job recommender. In: ICAS 2007: Proceedings of the Third International Conference on Autonomic and Autonomous Systems. IEEE Computer Society, Washington (2007)Google Scholar
  11. 11.
    Middleton, S.E., Shadbolt, N., Roure, D.D.: Capturing interest through inference and visualization: Ontological user profiling in recommender systems. In: K-CAP 2003 (2003)Google Scholar
  12. 12.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  13. 13.
    Eckhardt, A., Horváth, T., Vojtáš, P.: PHASES: A user profile learning approach for web search. In: Lin, T., Haas, L., Motwani, R., Broder, A., Ho, H. (eds.) 2007 IEEE/WIC/ACM International Conference on Web Intelligence - WI 2007, pp. 780–783. IEEE, Los Alamitos (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alan Eckhardt
    • 1
  • Peter Vojtáš
    • 1
  1. 1.Department of Software EngineeringCharles University, Institute of Computer Science, Czech Academy of SciencePragueCzech Republic

Personalised recommendations