A Perception-Based Portfolio Under Uncertainty: Minimization of Average Rates of Falling

  • Yuji Yoshida
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5861)


A perception-based portfolio model under uncertainty is discussed. In the proposed model, randomness and fuzziness are evaluated respectively by the probabilistic expectation and the mean values with evaluation weights and λ-mean functions. The means, the variances and the covariances fuzzy numbers/fuzzy random variables are evaluated in the possibility case and the necessity case, and the rate of return with portfolios is estimated by the both random factors and imprecise factors. In the portfolio model, the average rate of falling is minimized using average value-at-risks as a coherent risk measure. By analytical approach, we derive a solution of the portfolio problem to minimize the average rate of falling. A numerical example is given to illustrate our idea.


Fuzzy Number Portfolio Selection Risk Probability Evaluation Weight Short Selling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Mathematical Finance 9, 203–228 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Campos, L., Munoz, A.: A subjective approach for ranking fuzzy numbers. Fuzzy Sets and Systems 29, 145–153 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    El Chaoui, L., Oks, M., Oustry, F.: Worst-case value at risk and robust portfolio optimization: A conic programming approach. Operations Research 51, 543–556 (2003)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Fortemps, P., Roubens, M.: Ranking and defuzzification methods based on area compensation. Fuzzy Sets and Systems 82, 319–330 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Inuiguchi, M., Tanino, T.: Portfolio selection under independent possibilistic information. Fuzzy Sets and Systems 115, 83–92 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Jorion, P.: Value at Risk: The New Benchmark for Managing Financial Risk, 3rd edn. McGraw-Hill, New York (2007)Google Scholar
  7. 7.
    Kruse, R., Meyer, K.D.: Statistics with Vague Data. Riedel Publ. Co., Dortrecht (1987)zbMATHGoogle Scholar
  8. 8.
    Kwakernaak, H.: Fuzzy random variables – I. Definitions and theorem. Inform. Sci. 15, 1–29 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Markowitz, H.: Mean-Variance Analysis in Portfolio Choice and Capital Markets. Blackwell, Oxford (1990)Google Scholar
  10. 10.
    Pliska, S.R.: Introduction to Mathematical Finance: Discrete-Time Models. Blackwell Publ., New York (1997)Google Scholar
  11. 11.
    Puri, M.L., Ralescu, D.A.: Fuzzy random variables. J. Math. Anal. Appl. 114, 409–422 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Rockafellar, R.T., Uryasev, S.P.: Optimization of conditional value-at-risk. Journal of Risk 2, 21–42 (2000)Google Scholar
  13. 13.
    Steinbach, M.C.: Markowitz revisited: Mean-variance model in financial portfolio analysis. SIAM Review 43, 31–85 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Tanaka, H., Guo, P., Türksen, L.B.: Portfolio selection based on fuzzy probabilities and possibilistic distribution. Fuzzy Sets and Systems 111, 397 (2000)CrossRefGoogle Scholar
  15. 15.
    Yoshida, Y.: Mean values, measurement of fuzziness and variance of fuzzy random variables for fuzzy optimization. In: Proceedings of SCIS & ISIS 2006, September 2006, pp. 2277–2282 (2006)Google Scholar
  16. 16.
    Yoshida, Y.: A risk-minimizing model under uncertainty in portfolio. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 381–391. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Yoshida, Y.: Fuzzy extension of estimations with randomness: The perception-based approach. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds.) MDAI 2007. LNCS (LNAI), vol. 4617, pp. 295–306. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Yoshida, Y.: An estimation model of value-at-risk portfolio under uncertainty. Fuzzy Sets and Systems (to appear) doi:10.1016/j.fss2009.02.007Google Scholar
  19. 19.
    Zmeškal, Z.: Value at risk methodology of international index portfolio under soft conditions (fuzzy-stochastic approach). International Review of Financial Analysis 14, 263–275 (2005)CrossRefGoogle Scholar
  20. 20.
    Zadeh, L.A.: Fuzzy sets. Inform. and Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yuji Yoshida
    • 1
  1. 1.Faculty of Economics and Business AdministrationUniversity of KitakyushuKitakyushuJapan

Personalised recommendations