Skip to main content

Comparison of Data Structures for Computing Formal Concepts

  • Conference paper
Modeling Decisions for Artificial Intelligence (MDAI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5861))

Abstract

Presented is preliminary study of the role of data structures in algorithms for formal concept analysis. Studied is performance of selected algorithms in dependence on chosen data structures and size and density of input object-attribute data. The observations made in the paper can be seen as guidelines on how to select data structures for implementing algorithms for formal concept analysis.

Supported by institutional support, research plan MSM 6198959214.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belohlavek, R., De Baets, B., Outrata, J., Vychodil, V.: Inducing decision trees via concept lattices. Int. J. General Systems 38(4), 455–467 (2009)

    Article  MATH  Google Scholar 

  2. Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. Journal of Computer and System Sciences (to appear)

    Google Scholar 

  3. Carpineto, C., Romano, G.: Concept data analysis. Theory and applications. J. Wiley, Chichester (2004)

    Book  MATH  Google Scholar 

  4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  5. Ganter, B.: Two basic algorithms in concept analysis. Technical Report FB4-Preprint No. 831. TH Darmstadt (1984)

    Google Scholar 

  6. Ganter, B., Wille, R.: Formal concept analysis. Mathematical foundations. Springer, Berlin (1999)

    MATH  Google Scholar 

  7. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Information Processing Letters 27(3), 119–123 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kuznetsov, S.: Interpretation on graphs and complexity characteristics of a search for specific patterns. Automatic Documentation and Mathematical Linguistics 24(1), 37–45 (1989)

    Google Scholar 

  9. Kuznetsov, S.: A fast algorithm for computing all intersections of objects in a finite semi-lattice (Бьстрый алгоритм построения всех пересечений объектовиз конечной полурешетки in Russian). Automatic Documentation and Mathematical Linguistics 27(5), 11–21 (1993)

    Google Scholar 

  10. Kuznetsov, S.: Learning of Simple Conceptual Graphs from Positive and Negative Examples. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 384–391. Springer, Heidelberg (1999)

    Google Scholar 

  11. Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Int. 14, 189–216 (2002)

    Article  MATH  Google Scholar 

  12. Levitin, A.V.: Introduction to the Design and Analysis of Algorithms. Addison Wesley, Reading (2002)

    Google Scholar 

  13. Lindig, C.: Fast concept analysis. In: Working with Conceptual Structures––Contributions to ICCS 2000, pp. 152–161. Shaker Verlag, Aachen (2000)

    Google Scholar 

  14. Norris, E.M.: An Algorithm for Computing the Maximal Rectangles in a Binary Relation. Revue Roumaine de Mathématiques Pures et Appliques 23(2), 243–250 (1978)

    MATH  MathSciNet  Google Scholar 

  15. Outrata, J., Vychodil, V.: Fast algorithm for computing fixpoints of Galois connections induced by object-attribute relational data (submitted)

    Google Scholar 

  16. Sedgewick, R.: Left-leaning red-black trees, http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf

  17. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Ordered Sets, Dordrecht-Boston, pp. 445–470 (1982)

    Google Scholar 

  18. Zaki, M.J.: Mining non-redundant association rules. Data Mining and Knowledge Discovery 9, 223–248 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krajca, P., Vychodil, V. (2009). Comparison of Data Structures for Computing Formal Concepts. In: Torra, V., Narukawa, Y., Inuiguchi, M. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2009. Lecture Notes in Computer Science(), vol 5861. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04820-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04820-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04819-7

  • Online ISBN: 978-3-642-04820-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics