Advertisement

Interactive Robust Multiobjective Optimization Driven by Decision Rule Preference Model

  • Roman Słowiński
Conference paper
  • 658 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5861)

Abstract

Interactive procedures for MultiObjective Optimization (MOO) consist of a sequence of steps alternating calculation of a sample of non-dominated solutions and elicitation of preference information from the Decision Maker (DM). We consider three types of procedures, where in preference elicitation stage, the DM is just asked to indicate which solutions are relatively good in the proposed sample. In all three cases, the preference model is a set of “if . . . , then . . .” decision rules inferred from the preference information using the Dominance-based Rough Set Approach (DRSA) (3; 4; 11).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belton, V., Branke, J., Eskelinen, P., Greco, S., Molina, J., Ruiz, F., Słowiński, R.: Interactive Multiobjective Optimization from a Learning Perspective. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 405–433. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.): Multiobjective Optimization. LNCS, vol. 5252. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  3. 3.
    Greco, S., Matarazzo, B., Słowiński, R.: The use of rough sets and fuzzy sets in MCDM. In: Gal, T., Hanne, T., Stewart, T. (eds.) Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory and Applications, pp. 14.1–14.59. Kluwer, Dordrecht (1999)Google Scholar
  4. 4.
    Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129, 1–47 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Greco, S., Matarazzo, B., Słowiński, R.: Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules. European Journal of Operational Research 158, 271–292 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Greco, S., Matarazzo, B., Słowiński, R.: Dominance-based Rough Set Approach to Interactive Multiobjective Optimization. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 121–155. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Greco, S., Matarazzo, B., Słowiński, R.: Dominance-based rough set approach to decision under uncertainty and time preference. Annals of Operations Research (to appear), doi:10.1007/s10479-009-0566-8Google Scholar
  8. 8.
    Greco, S., Matarazzo, B., Słowiński, R.: DARWIN: Dominance-based rough set Approach to handling Robust Winning solutions in Interactive multiobjective optimization. In: Proc. 5th Intl. Workshop on Preferences and Decisions, Trento, April 6-8, pp. 34–41 (2009)Google Scholar
  9. 9.
    Ogryczak, W., Ruszczyński, A.: Dual stochastic dominance and related mean-risk models. SIAM J. Optimization 13, 60–78 (2002)zbMATHCrossRefGoogle Scholar
  10. 10.
    Słowiński, R., Greco, S., Matarazzo, B.: Axiomatization of utility, outranking and decision-rule preference models for multiple-criteria classification problems under partial inconsistency with the dominance principle. Control and Cybernetics 31, 1005–1035 (2002)zbMATHGoogle Scholar
  11. 11.
    Słowiński, R., Greco, S., Matarazzo, B.: Rough set based decision support. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, ch. 16, pp. 475–527. Springer, New York (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Roman Słowiński
    • 1
    • 2
  1. 1.Institute of Computing SciencePoznań University of TechnologyPoznań
  2. 2.Systems Research InstitutePolish Academy of SciencesWarsawPoland

Personalised recommendations