Skip to main content

Algorithms for Systems of Linear Equations

  • Chapter
  • First Online:
  • 3752 Accesses

Abstract

The solution of a system of simultaneous linear equations is a fundamental problem in numerical linear algebra and is a basic ingredient of many scientific simulations. Examples are scientific or engineering problems modeled by ordinary or partial differential equations. The numerical solution is often based on discretization methods leading to a system of linear equations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Reference

  1. S. Allmann, T. Rauber, and G. Rünger. Cyclic Reduction on Distributed Shared Memory Machines. In Proceedings of the 9th Euromicro Workshop on Parallel and Distributed Processing, pages 290–297, Mantova, Italien, 2001. IEEE Computer Society Press.

    Google Scholar 

  2. D. Braess. Finite Elements. 3rd edition, Cambridge University Press, Cambridge, 2007.

    Book  Google Scholar 

  3. J.J. Dongarra, I.S. Duff, D.C. Sorenson, and H.A. van der Vorst. Solving Linear Systems on Vector and Shared Memory Computers. SIAM, Philadelphia, 1993.

    Google Scholar 

  4. T.L. Freeman and C. Phillips. Parallel Numerical Algorithms. Prentice Hall, Upper Saddle River, 1992.

    MATH  Google Scholar 

  5. A. Frommer. Lösung linearer Gleichungssysteme auf Parallelrechnern. Vieweg, Braunschweig, 1990.

    MATH  Google Scholar 

  6. A. George, J. Liu, and E. Ng. User’s Guide for SPARSPAK: Waterloo Sparse Linear Equations Package. Technical Report CS-78–30, Department of Computer Science, University of Waterloo, 1980.

    Google Scholar 

  7. A. George and J.W.-H. Liu. Computer Solution of Large Sparse Positive Definite Systems. PrenticeHall, Englewood Cliffs, 1981.

    MATH  Google Scholar 

  8. G. Golub and Ch. Van Loan. Matrix Computations. 3rd edition, The Johns Hopkins University Press, Baltimore, 1996.

    MATH  Google Scholar 

  9. G. Golub and J. Ortega. Scientific Computing. Academic Press, Boston, 1993.

    MATH  Google Scholar 

  10. A. Gupta, G. Karypis, and V. Kumar. Highly scalable parallel algorithms for sparse matrix factorization. IEEE Transactions on Parallel and Distributed Systems, 8(5): 502–520, 1997.

    Article  Google Scholar 

  11. W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations. Springer, New York, 1994.

    MATH  Google Scholar 

  12. M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49: 409–436, 1952.

    MATH  MathSciNet  Google Scholar 

  13. R. Hockney. A fast direct solution of Poisson’s equation using Fourier analysis. Journal of the ACM, 12: 95–113, 1965.

    Article  MATH  MathSciNet  Google Scholar 

  14. J.D. Jackson. Classical Electrodynamics. 3rd edition, Wiley, New York and Chichester, 1998.

    Google Scholar 

  15. F.T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, San Mateo, 1992.

    MATH  Google Scholar 

  16. D.E. Lenoski and W.Weber. Scalable Shared-Memory Multiprocessing. Morgan Kaufmann, San Francisco, 1995.

    Google Scholar 

  17. J.W.H. Liu. The role of elimination trees in sparse factorization. The SIAM Journal on Matrix Analysis and Applications, 11: 134–172, 1990.

    Article  MATH  Google Scholar 

  18. E.G. Ng and B.W. Peyton. A Supernodal Cholesky Factorization Algorithm for Shared-Memory Multiprocessors. Technical Report, Oak Ridge National Laboratory, 1991.

    Google Scholar 

  19. J.M. Ortega. Introduction to Parallel and Vector Solutions of Linear Systems. Plenum Publishing Corp., New York, 1988.

    Google Scholar 

  20. J.M. Ortega and R.G. Voigt. Solution of Partial Differential Equations on Vector and Parallel Computers. SIAM, Philadelphia, 1985.

    MATH  Google Scholar 

  21. P.S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, San Francisco, 1997.

    MATH  Google Scholar 

  22. T. Rauber and G. Rünger. Deriving array distributions by optimization techniques. Journal of Supercomputing, 15: 271–293, 2000.

    Article  MATH  Google Scholar 

  23. J.K. Reid. On the Method of Conjugate Gradients for the Solution of Large Sparse Systems of Linear Equations. In Large Sparse Sets of Linear Equations, pages 231–254. Academic Press, New York, 1971.

    Google Scholar 

  24. E. Rothberg and A. Gupta. An evaluation of left-looking, right-looking and multifrontal approaches to sparse Cholesky factorization on hierarchical-memory machines. International Journal of High Speed Computing, 5(4): 537–593, 1993.

    Article  Google Scholar 

  25. Y. Saad. Iterative Methods for Sparse Linear Systems. International Thomson Publ., London, 1996.

    MATH  Google Scholar 

  26. Y. Saad. Krylov subspace methods on supercomputers. SIAM Journal on Scientific and Statistical Computing, 10: 1200–1332, 1998.

    Article  MathSciNet  Google Scholar 

  27. J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer, New York, 2002.

    MATH  Google Scholar 

  28. H.S. Stone. An efficient parallel algorithm for the solution of a tridiagonal linear system of equations. Journal of the ACM, 20: 27–38, 1973.

    Article  MATH  Google Scholar 

  29. E.F. van de Velde. Concurrent Scientific Computing. Springer, New York, 1994.

    MATH  Google Scholar 

  30. M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM Journal on Algebraic and Discrete Methods, 2: 77–79, 1991.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Rauber .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rauber, T., Rünger, G. (2010). Algorithms for Systems of Linear Equations. In: Parallel Programming. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04818-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04818-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04817-3

  • Online ISBN: 978-3-642-04818-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics