Skip to main content

Biotech Crops for Ecology and Environment

  • Chapter
Book cover Transgenic Crop Plants

Environmental pollution is a serious problem plaguing humanity, modern human society and the quality of human life all across the globe. Chemical pollution is a potent source of ecological and environmental degradation in recent times because of the extensive use of chemicals in our modern life (Gray 2006; Datta Banik et al. 2007). Environmentally toxic chemicals range from a wide diversity of different functional groups and species. They include: toxicants, irritants, mutagens, clasto-gens, carcinogens, teratogens, plastics, xenobiotics, pesticides and fertilizers, heavy metals, metalloids, pharmaceutical compounds, organic compounds, industrial effluents, untreated domestic and industrial wastes, different radioactive wastes, radionuclides, and abandoned military ammunition chemicals (Schnoor et al. 1995; Schnoor 1997; Salt et al. 1998; Thompson et al. 1998; Lucero et al. 1999; Hooker and Skeen 1999; Yoon et al. 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aken BV (2008) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends Biotechnol 26(5):225–227

    Article  PubMed  CAS  Google Scholar 

  • Arazi T, Sunker R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni+2 tolerance and Pb+2 hypersenitivity in transgenic plants. Plant J 20 (2):171–182

    Article  CAS  PubMed  Google Scholar 

  • Arisi ACM, Mocquot B, Lagriffoul A, Mench M, Foyer CH, Jouanin L (2000) Responses to cadmium in leaves of transformed poplars overexpressing γ-glutamylcysteine synthetase. Physiol Plant 109:143–149

    Article  CAS  Google Scholar 

  • Assuncao A, Martins P, De Folter S, Vooijs R, Schatt H, Aarts MGM (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caer-ulescens. Plant Cell Environ 24:217–226

    Article  CAS  Google Scholar 

  • Azevedo JA, Azavedo RA (2006) Heavy metals and oxidative stress where do we go from here?. Commun Biomet Crop Sci 1(2):135–138

    Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants with hyper-accumulate metallic elements — a review of their distribution, ecology and phytochemistry. Biorecover 1:81–126

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conservat Recycl 11:41–49

    Article  Google Scholar 

  • Banat IM (1995) Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresour Technol 51(1):1–12

    Article  CAS  Google Scholar 

  • Banerjee S, Shang TQ, Wilson AM, Moore AL, Strand SE, Gordon MP, Doty SL (2002) Expression of functional mammalian P450 2E1 in hairy root cultures. Biotechnol Bioeng 77:462–466

    Article  CAS  PubMed  Google Scholar 

  • Banuelos GS, Cardon G, Mackey B, Ben-Asher J, Wu L, Beuselinck P, Akohoue S, Zambruzuski S (1993) Boron and selenium removal in boron-laden soils by four sprinkler irrigated plant species. J Environ Qual 22:786–792

    Article  CAS  Google Scholar 

  • Banuelos GS, Ajwa HA, Wu L, Guo X, Akohoue S, Zambruzuski S (1997) Selenium-induced growth reduction in Brassica land races considered for phytoremediation. Ecotoxicol Environ Saf 36:282–287

    Article  CAS  PubMed  Google Scholar 

  • Banuelos G, Leduc DL, Pilon-Smits EAH, Terry N (2007) Transgenic indian mustard overexpres- sing selenocysteine lyase or selenocysteine methyltransferase exhibit enhanced potential for selenium phytoremediation under field conditions. Environ Sci Technol 41(2):599–605

    Article  CAS  PubMed  Google Scholar 

  • Barcelo J, Poschenrieder C (2003) Phytoremediation: principles and perspectives. Contribut Sci 2(3):333–344

    Google Scholar 

  • Becher M, Talke I, Krall L, Kramer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    Article  CAS  PubMed  Google Scholar 

  • Beckett PHT, Davis RD (1988) Upper critical levels of toxic elements in plants. New Phytol 79:95–106

    Article  Google Scholar 

  • Bennett LE, Burkhead JL, Hale KL, Terry N, Pilona M, Pilon-Smits EAH (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32(2):432–440

    Article  CAS  PubMed  Google Scholar 

  • Besplug J, Filkowski J, Burke P, Kovalchuk I, Kovalchuk O (2004) Atrazine induces homologous recombination but not point mutation in the transgenic plant-based biomonotoring assay. Arch Environ Contam Toxicol 46(3):296–300

    Article  CAS  PubMed  Google Scholar 

  • Bizily S, Rugh C, Meagher R (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    Article  CAS  PubMed  Google Scholar 

  • Bizily SP, Kim T, Kandasamy MK, Meagher RB (2003) Subcellular targeting of methylmercury lyase enhances its specific activity for organic mercury detoxification in plants. Plant Physiol 131:463–471

    Article  CAS  PubMed  Google Scholar 

  • Black H (1995) Absorbing possibilities: phytoremediation. Environ Health Perspect 103 (12):1106–1108

    Article  CAS  PubMed  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov V, Zakharova O, Gussman C, Kapulnik Y, Raskin I (1997) Enhanced accumulation of lead in Indian mustard by soil applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Bohmert K, Balbo I, Kopka J, Mittendorf V, Nawrath C, Poirier Y, Tischendorf G, Trethewey RN, Willmitzer L (2000) Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4% of their fresh weight. Planta 211:841–845

    Article  CAS  PubMed  Google Scholar 

  • Boyajian GE, Carrieira LH (1997) Phytoremediation: a clean transition from laboratory to marketplace?. Nat Biotechnol 15:127–128

    Article  CAS  PubMed  Google Scholar 

  • Boyko A, Greer M, Kovalchuk I (2006) Acute exposure to UVB has more pronounced effect on plant genome stability than chronic exposure. Mutat Res 602:100–109

    CAS  PubMed  Google Scholar 

  • Bradshaw A (1997) Restoration of mined lands-using natural processes. Ecol Eng 8:255–269

    Article  Google Scholar 

  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3 (9):359–362

    Article  Google Scholar 

  • Brooks RR, Anderson C, Stewart RB, Robinson BH (1999) Phytomining: growing a crop of a metal. Biologist 46(5):201–205

    Google Scholar 

  • Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol Biotechnol 16(2):79–101

    CAS  Google Scholar 

  • Castoldi AF, Coccini T, Ceccatelli S, Manzo L (2001) Neurotoxicity and molecular effects of methylmercury. Brain Res Bull 55(2):197–203

    Article  CAS  PubMed  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Angel JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  CAS  PubMed  Google Scholar 

  • Che DS, Meagher RB, Heaton AC, Lima A, Merkle SA (2003) Expression of mercuric ion reductase in eastern cottonwood confers mercuric ion reduction and resistance. Plant Biotech-nol 1(4):311–319

    Article  CAS  Google Scholar 

  • Cherian S, Oliveira M (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Qual 39(24):9377–9390

    CAS  Google Scholar 

  • Chong DKX, Langridge WHR (2000) Expression of full-length bioactive antimicrobial human lactoferrin in potato plants. Transgenic Res 9:71–78

    Article  CAS  PubMed  Google Scholar 

  • Chong DKX, Roberts W, Arakawa T, Illes K, Bagi G, Slattery CW, Langridge WHR (1997) Expression of human milk protein β-casein in transgenic potato plants. Transgenic Res 6:289–296

    Article  CAS  PubMed  Google Scholar 

  • Chrastilova Z, Mackova M, Novakova M, Maeck T, Szekeres M (2007) Transgenic plants for effective phytoremediation of persistent toxic organic pollutants present in the environment. J Biotechnol, Abstr No 5: S38. doi:10.1016/j.biotec.2007.07.64

    Google Scholar 

  • Clements S, Plamgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  Google Scholar 

  • Cluis C (2004) Junk-greedy greens: phytoremediation as a new option for soil decontamination. Biotechnol J 2:61–67

    Google Scholar 

  • Cobbett CS, Meagher RB (2002) Arabidopsis and the genetic potential for the phytoremediation of toxic elemental and organic pollutants. In: Arabidopsis book. Am Soc Plant Biol, pp 1–22. http://www.aspb.org/publications/arabidopsis/toc.cfm. Accessed 21 Jul 2008

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  CAS  Google Scholar 

  • Czako M, Feng X, He Y, Liang D, Pollock R, Marton L (2006) Phytoremediation with transgenic plants. Acta Hortic 725:753–770

    CAS  Google Scholar 

  • Datta Banik S, Basu SK, De AK (2007) Environment concerns and perspectives. APH Publ, New Delhi, India, pp 113–138

    Google Scholar 

  • Datta R, Sarkar D (2004) Effective integration of soil chemistry and plant molecular biology in phytoremediation of metals: an overview. Environ Geosci 11(2):53–63

    Article  Google Scholar 

  • de Crombrugghe SA (1964) Vergleich einiger amerikanischer Wildschadenverhütungsmittel mit deutschen Präparaten. Z Jagdwiss 10(2):62–68

    Article  Google Scholar 

  • Denton B (2007) Advances in phytoremediation of heavy metals using plant growth promoting bacteria and fungi. Microbiol Mol Genet 3:1–5

    Google Scholar 

  • Dhanker OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolearance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    Article  CAS  Google Scholar 

  • Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109 (1):163–168

    Article  CAS  PubMed  Google Scholar 

  • Doran PM (2000) Foreign protein production in plant tissue cultures. Curr Opin Biotechnol 11:199–204

    Article  CAS  PubMed  Google Scholar 

  • Doty SL, Shang TQ, Wilson AM, Tangen J, Westergreen AD, Newman LA, Strand SE, Gordon MP (2000) Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 E1. Proc Natl Acad Sci USA 97:6287–6292

    Article  CAS  PubMed  Google Scholar 

  • Doty SL, Shang TQ, Wilson AM, Moore AL, Newman LA, Strand SE, Gordon MP (2003) Metaboism of the soil and groundwater contaminants, ethylene dibromide and trichoethylene, by the tropical leguminous tree, Leucaena leucocephala. Water Res 37(2):441–449

    Article  CAS  PubMed  Google Scholar 

  • Doty SL, James CA, Moore AL, Vajzovic A, Singleton GL, Ma C, Khan Z, Xin G, Kang JW, Park JY, Meilan R, Strauss SH, Wilkerson J, Farin F, Strand SE (2007) Enhanced phytoreme-diation of volatile environmental pollution with transgenic trees. Proc Natl Acad Sci USA 104(43):16816–16821

    Article  CAS  PubMed  Google Scholar 

  • Drake PMW, Chargelegue D, Vine ND, Van Dolleweerd GJ, Obregon P, Ma JK-C (2002) Transgenic plants expressing antibodies: a model for phytoremediation. FASEB J 16:1855–1860

    Article  CAS  PubMed  Google Scholar 

  • Dushekov V, Nanda Kumar PBA, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aquatic streams. Environ Sci Technol 29:1239–1245

    Article  Google Scholar 

  • Eapen S, D'Souza SF (2005) Prospects of genetic engineering of plants for Phytoremediation of toxic metals. Biotechnol Adv 23(2):97–144

    Article  CAS  PubMed  Google Scholar 

  • Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B, Wood KV, Harris HH, Pickering IJ, Salt DE (2004) Production of Se-methylselenocysteine in transgenic plants expressing seleno-cysteine methyltransferase. BMC Plant Biol 4:1. doi:10.1186/1471-2229-4-1

    Article  PubMed  Google Scholar 

  • Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM, Robinson NJ (1992) Expression of pea metallothionein-like gene PsMTA function. Plant Mol Biol 20:1019–1028

    Article  CAS  PubMed  Google Scholar 

  • Filkowski J, Besplug J, Burke P, Kovalchuk I, Kovalchuk O (2003) Recombination- and point mutation-monitoring transgenic plants reveal the genotoxicity of commonly used herbicides 2, 4-D and dicamba. Mutat Res 542(1–2):23–32

    CAS  PubMed  Google Scholar 

  • Fischer R, Emans N (2000) Molecular farming of pharmaceutical proteins. Transgenic Res 9:279–299

    Article  CAS  PubMed  Google Scholar 

  • Fischer R, Hoffmann K, Schillberg S, Emans N (2000) Antibody production by molecular farming in plants. J Biol Regul Homeost Agents 14:83–92

    CAS  PubMed  Google Scholar 

  • Fladung M, Ewald D (2006) Tree transgenesis — recent developments. Springer, Berlin, pp 137–148

    Google Scholar 

  • Floco CG, Giulietti AM (2007) In vitro hairy root cultures as a tool for phytoremediation research. In: Willey N (ed) Phytoremediation: methods and reviews. Humana Press, Totowa, NJ, pp 161–173

    Chapter  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer WA, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyper- accumulators. Plant Cell 16:2176–2191

    Article  CAS  PubMed  Google Scholar 

  • French CE, Nicklin S, Bruce NC (1998) Aerobic degradation of 2, 4, 6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Appl Environ Micro-biol 64(8):2864–2868

    CAS  Google Scholar 

  • French CE, Rosser SJ, Davies GJ, Nicklin S, Bruce NC (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat Biotechnol 17:491–494

    Article  CAS  PubMed  Google Scholar 

  • Frigerio L, Vine ND, Pedrazzini E, Hein MB, Wang F, Ma JKC, Vitale A (2000) Assembly, secretion, and vacuolar delivery of a hybrid immunoglobulin in plants. Plant Physiol 123:1483–1493

    Article  CAS  PubMed  Google Scholar 

  • Garcia JS, Magalhaes CS, Arruda MAZ (2006) Trends in metal-binding and metalloprotein analysis. Talanta 69:1–15

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3(1):1–18

    Google Scholar 

  • Giangrande A, Cavallo A, Licciano M, Mola E, Pierri C, Trianni L (2006) Utilization of the filterfeeder polychaete Sabella spallanzanii Gmelin (Sabellidae) as bioremediator in aquaculture. Aquacult Int 13:129–136

    Article  Google Scholar 

  • Giddings G, Allison G, Brooks D, Carter C (2000) Transgenic plants as factories for biopharma- ceuticals. Nat Biotechnol 18:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Gifford S, Dunstan H, O'Connor W, Macfarlane GR (2005) Quantification of in situ nutrient and heavy metal remediation by a small pearl oyster (Pinctada imbricata) farm at Port Stephens, Australia. Mar Pollut Bull 50(4):417–422

    Article  CAS  PubMed  Google Scholar 

  • Gifford S, Dunstan RH, O'Conor W, Koller CE, MacFarlane GR (2007) Aquatic zooremediation: deploying animals to remediate contaminated aquatic environments. Trends Biotechnol 25 (2):60–65

    Article  CAS  PubMed  Google Scholar 

  • Gisbert C, Ros R, Haro AD, Walker DJ, Bernal MP, Serrano R, Avino JN (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Bichem Biophys Res Commun 303:440–445

    Article  CAS  Google Scholar 

  • Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, Dushenkov S, Logendra S, Gleba YY, Raskin I (1999) Use of plant roots for phytoremediation and molecular farming. Proc Natl Acad Sci USA 96(11):5973–5977

    Article  CAS  PubMed  Google Scholar 

  • Goel A, Kumar G, Payne GF, Dube SK (1997) Plant cell biodegradation of a xenobiotic nitrate ester, nitroglycerin. Nat Biotechnol 15:174–177

    Article  CAS  PubMed  Google Scholar 

  • Gong JM, Lee D, Schroeder JI (2003) Long-distance root-to-shoot transport to phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci USA 100:10118–10123

    Article  CAS  PubMed  Google Scholar 

  • Gosline JM, Guerette PA, Ortlepp CS, Savage KN (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202:3295–3303

    CAS  PubMed  Google Scholar 

  • Gratao PL, Prasad MNV, Cardoso PF, Lea PJ, Azevedo RA (2005) Phytoremediation: green technology for the clean up of toxic metals in the environment. Braz J Plant Physiol 17(1):53–64

    Article  CAS  Google Scholar 

  • Gray KA (2006) General phytoremediation. Section 3. www.civil.northwestern.edu/EHE/ HTML_KAG/Kimweb/MEOP/Section3.htm. Accessed 14 Jul 2008

  • Ha S-B, Smith AP, Howden R, Dietrich WM, Bugg S, O'Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153–1164

    Article  CAS  PubMed  Google Scholar 

  • Hammer J (1996) Improving water quality in eutrophied fjord system with mussel farming. Ambio 25:356–362

    Google Scholar 

  • Hannik N, Rosser SJ, French CE, Basran A, Murray JAH, Nicklin S, Bruce NC (2001) Phytor- emediation of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19:11168–11172

    Google Scholar 

  • Hannink NK, Rosser SJ, Bruce NC (2002) Phytoremediation of explosives. Crit Rev Plant Sci 21(5):511–538

    Article  CAS  Google Scholar 

  • Hassinen VH, Tervahauta AI, Karenlampi S (2007) Searching for genes involved in metal tolearance, uptake and transport. In: Willey N (ed) Phytoremediation: methods and reviews. Humana Press, New Jersey, USA, pp 265–289

    Chapter  Google Scholar 

  • He YK, Jg S, Feng XZ, Czako M, Marton L (2001) Differential mercury volatilization by tobacco organs expressing a modified bacterial merA gene. Cell Res 11:231–236

    Article  CAS  PubMed  Google Scholar 

  • Heaton A, Rugh C, Wang N, Meagher R (1998) Phytoremediation of mercury and methylmercury polluted soils using genetically engineered plants. J Soil Contam 7:497–509

    Article  CAS  Google Scholar 

  • Heaton AC, Rugh CL, Kim T, Wang NJ, Meagher RB (2003) Towards detoxifying mercury- polluted aquatic sediments with rice genetically engineered for mercury resistance. Environ Toxicol Chem 12:2940–2947

    Article  Google Scholar 

  • Heinekamp Y-J, Willey N (2007) Using real-time PCR polymerase chain reaction to quantify gene expression in plants exposed to radioactivity. In: Willey N (ed) Phytoremediation: methods and reviews. Humana Press, New Jersey, USA, pp 59–70

    Chapter  Google Scholar 

  • Hohn B, Kovalchuk I, Kovalchuk O (1999) Transgenic plants sense radioactive contamination. BioWorld 6:13–15

    Google Scholar 

  • Hooker BS, Skeen RS (1999) Transgenic phytoremediation blasts onto the scene. Nat Biotechnol 17:428

    Article  CAS  PubMed  Google Scholar 

  • Houmiel KL, Slater S, Broyles D, Casagrande LS, Colburn S, Gonzalez K, Mitsky TA, Reiser SE, Shah D, Taylor NB, Tran M, Valenti HE, Gruys KJ (1999) Poly(β-hydroxybutyrate) production in oilseed leucoplasts of Brassica napus. Planta 209:547–550

    Article  CAS  PubMed  Google Scholar 

  • Hussein HS, Ruiz ON, Terry N, Daniell H (2007) Phytoremediation of mercury and organomer- curials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization. Environ Sci Technol 41:8439–8446

    Article  CAS  PubMed  Google Scholar 

  • John ME, Keller G (1996) Metabolic pathway engineering in cotton: biosynthesis of polyhydrox-ybutyrate in fiber cells. Proc Natl Acad Sci USA 93:12768–12773

    Article  CAS  PubMed  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegradation 45(1–2):57–88

    Article  CAS  Google Scholar 

  • Kovalchuk I, Kovalchuk O (2001) Bioindication with transgenic plants. ISB News Rep, Sep 2001, pp 1–3

    Google Scholar 

  • Kovalchuk I, Kovalchuk O (2008) Transgenic plants as sensors of environmental pollution genotoxicity. Sensors 8:1539–1558

    Article  CAS  Google Scholar 

  • Kovalchuk I, Kovalchuk O, Arkhipov A, Hohn B (1998) Transgenic plants are sensitive bioindi- cators of nuclear pollution caused by the Chernobyl accident. Nat Biotechnol 16:1054–1059

    Article  CAS  PubMed  Google Scholar 

  • Kovalchuk I, Kovalchuk O, Hohn B (1999a) Transgenic plants as bioindicators of environmental pollution, vol 1. AgBiotechNet, Oct 1999, ABN 030

    Google Scholar 

  • Kovalchuk O, Kovalchuk I, Titov V, Arkhipov A, Hohn B (1999b) Radiation hazard caused by the Chernobyl accident in inhabited areas of Ukraine can be monitored by transgenic plants. Mutat Res 446:49–55

    CAS  Google Scholar 

  • Kovalchuk I, Kovalchuk O, Fritsch O, Hohn B (2000a) Des bio-indicators de pollution radioactive. Biofutur 205:48–51

    Google Scholar 

  • Kovalchuk I, Kovalchuk O, Hohn B (2000b) Genome-wide variation of the somatic mutation frequency in transgenic plants. EMBO J 19:4431–4438

    Article  CAS  Google Scholar 

  • Kovalchuk O, Arkhipov A, Dubrova Yu, Hohn B, Kovalchuk I (2000c) Wheat mutation rate after Chernobyl. Nature 407:583–584

    Article  CAS  Google Scholar 

  • Kovalchuk I, Kovalchuk O, Hohn B (2001a) Biomonitoring of genotoxicity of environmental factors with transgenic plants. Trends Plant Sci 6:306–310

    Article  CAS  Google Scholar 

  • Kovalchuk O, Titov V, Hohn B, Kovalchuk I (2001b) A sensitive transgenic plant system to detect toxic inorganic compounds in the environment. Nat Biotechnol 19:568–572

    Article  CAS  Google Scholar 

  • Langridge WHR (2000) Edible vaccines. Sci Am 283:48–53

    Google Scholar 

  • Lebel EG, Masson J, Bogucki A, Paszkowski J (1993) Stress-induced intrachromosomal recombination in plant somatic cells. Proc Natl Acad Sci USA 90:422–426

    Article  CAS  PubMed  Google Scholar 

  • LeDuc DL, Tarun AS, Montes-Bayson M, Meija J, Malit MF, Wu CP, Abdel Samie M, Chiang CY, Tagmount A, deSouza M, Neuhier B, Bock A, Caruso J, Terry N (2004) Over-expression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Moon J, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    Article  CAS  PubMed  Google Scholar 

  • Li L, Jean M, Belzile F (2006) The impact of sequence divergence and DNA mismatch repair on homeologous recombination in Arabidopsis. Plant J 45:908–916

    Article  CAS  PubMed  Google Scholar 

  • Liang ZY, Pilon-Smits EA, Jouanin L, Terry N (1999) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119(1):73–80

    Article  Google Scholar 

  • Liu S, Suflita JM (1993) Ecology and evolution of microbial populations for bioremediations. Trends Biotechnol 11(8):344–352

    Article  CAS  PubMed  Google Scholar 

  • Lossl A, Eibl C, Harloff J, Jung C, Koop UH (2003) Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Rep 21:891–899

    CAS  PubMed  Google Scholar 

  • Lovely DR (2003) Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol 1:35–44

    Article  CAS  Google Scholar 

  • Lucero ME, Mueller W, Hubstenberger J, Phillips GC, O'Conell MA (1999) Tolerance to nitrogenous explosives and metabolism of TNT by cell suspensions of Datura innoxia. In Vitro Cell Dev Biol Plant 35:480–486

    Article  CAS  Google Scholar 

  • MacKenzie BR, Almesjö L, Hansson S (2004) Fish, fishing, and pollutant reduction in the Baltic Sea. Environ Sci Technol 38(7):1970–1976

    Article  CAS  PubMed  Google Scholar 

  • Maser P, Thomine S, Schroeder J, Wrad J, Hirschi K, Sze H, Talke I, Amtmann A, Maathuis F, Sanders D, Harper J, Tchieu J, Gribskov M, Persans M, Salt D, Kim S, Guerinot M (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  CAS  PubMed  Google Scholar 

  • McGloughlin MN, Burke JI (2000) Biotechnology — present position and future developments. Teagasc, Ireland, UK, pp 118–127

    Google Scholar 

  • McIntyre T (2003) Phytoremediation of heavy metals from soils. Adv Biochem Eng Biotechnol 78:97–123

    CAS  PubMed  Google Scholar 

  • McLean J, Purvis OW, Williamson BJ, Bailey EH (1998) Role for lichen melanins in uranium remediation. Nature 391:649–650

    Article  CAS  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  CAS  PubMed  Google Scholar 

  • Meagher RB, Rugh CL, Kandasamy MK, Gragson G, Wang NJ (2000) Engineered phytoremedia- tion of mercury pollution in soil and water using bacterial genes. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, FL, pp 201–221

    Google Scholar 

  • Meier JR, Chang LW, Jacobs S, Torsella J, Meckes MC, Smith MK (1997) Use of plant and earthworm bioassays to evaluate remediation of soil from a site contaminated with polychlori-nated biphenyls. Environ Toxicol Chem 16(5):928–938

    Article  CAS  Google Scholar 

  • Mejare M, Bulow L (2001) Metal-binding proteins and peptides in bioremediation and phytor- emediation of heavy metals. Trends Biotechnol 19(2):67–73

    Article  CAS  PubMed  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environ-ments-an emerging remediation technology. Environ Health Perspect 116(3):278–283

    Article  CAS  PubMed  Google Scholar 

  • Menzel G, Harloff HJ, Jung C (2003) Expression of bacterial poly(3-hydroxybutyrate) synthesis genes in the hairy roots of sugar beet (Beta vulgaris L.). Appl Microbiol Biotechnol 60:571–576

    CAS  PubMed  Google Scholar 

  • Mezzari MP, Walters K, Jelínkova M, Shih M-C, Just CL, Schnoor JL (2005) Gene expression and microscopic analysis of Arabidopsis exposed to chloroacetanilide herbicides and explosive compounds. A phytoremediation approach. Plant Physiol 138(2):858–869

    Article  CAS  PubMed  Google Scholar 

  • Milanese M, Chelossi E, Manconi R, Sarà A, Sidri M, Pronzato R (2003) The marine sponge Chondrilla nuculaSchmidt, 1862 as an elective candidate for bioremediation in integrated aquaculture. Biomol Eng 20(4–6):363–368

    Article  CAS  PubMed  Google Scholar 

  • Misra S, Gedamu L (1989) Heavy-metal tolerant transgenic Brassica napus L. and Nicotaina tabacum L. plants. Theor Appl Genet 78:161–1168

    Article  CAS  Google Scholar 

  • Moire L, Rezzonico E, Poirier Y (2003) Synthesis of novel biomaterials in plants. J Plant Physiol 160:831–839

    Article  CAS  PubMed  Google Scholar 

  • Naidu R, Oliver D, McConnell S (2003) Heavy metal phytotoxicity in soils. In: Langley A, Gilbey M, Kennedy B (eds) Proceedings of the 5th national workshop on the assessment of soil contamination. National Environment Protection Council, Adelaide, Australia, pp 235–241

    Google Scholar 

  • Nakashita H, Arai Y, Shikanai T, Doi Y, Yamaguchi I (2001) Introduction of bacterial metabolism into higher plants by polycistronic transgene expression. Biosci Biotechnol Biochem 65:1688–1691

    Article  CAS  PubMed  Google Scholar 

  • Nanda Kumar PBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  Google Scholar 

  • Nawrath C, Poirier Y, Somerville C (1994) Targeting of the polyhydroxybutyrate biosynthetic pathway to plastids of the Arabidopsis thaliana results in high levels of polymer accumulation. Proc Natl Acad Sci USA 91:12760–12764

    Article  CAS  PubMed  Google Scholar 

  • Newman LA, Strand SE, Choe N, Duffy J, Ekuan G (1997) Uptake and biotransformation of tricholoroethylene by hybrid poplars. Environ Sci Technol 31:1062–1067

    Article  CAS  Google Scholar 

  • Nie L, Shah S, Rashid A, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobac-ter cloacae CAL2. Plant Physiol Biochem 40:355–361

    Article  CAS  Google Scholar 

  • Novakova M, Mackova M, Sylvestre M, Macek T (2007) Preparation of genetically modified plants bacterial dioxygenase-toll for preferable phytoremediation. J Biotechnol 131S, Abstr No 1: S36. doi:10.1016/j.biotec.2007.07.60

    Google Scholar 

  • Ohkawa Y, Ohkawa H (2002) Transgenic rice and potato plants expressing human cytochrome P450S show cross-tolerance to herbicides by detoxifying them. http://www.agnet.org/library/ tb/159/. Accessed 14 Jul 2008

  • Oksman-Caldentey K-M, Barz WH (2002) Plant biotechnology and transgenic plants. Marcel Dekker, New York, USA, pp 665–669

    Book  Google Scholar 

  • Olguin EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv 22:81–91

    Article  CAS  PubMed  Google Scholar 

  • Pacyna E, Pacyna J (2002) Global emissions of mercury from anthropogenic sources in 1995. Water Air Soil Pollut 137:149–165

    Article  CAS  Google Scholar 

  • Pan A, Yang M, Tie F, Li L, Chen Z, Ru B (1994) Expression of mouse metallothionein-I gene confers cadmium resistance in transgenic tobacco plants. Plant Mol Biol 24:341–351

    Article  CAS  PubMed  Google Scholar 

  • Parmenter DL, Boothe JG, van Rooijen GJ, Yeung EC, Moloney MM (1999) Production of biologically active hirudin in plant seeds using oleosin partitioning. Plant Mol Biol 29:1167–1180

    Article  Google Scholar 

  • Pavlikova D, Macek T, Mackova M, Sura M, Szakova J, Tlustos P (2004) The evaluation of cadmium, zinc and nickel accumulation ability of transgenic tobacco bearing different transgenes. Plant Soil Environ 50:513–517

    CAS  Google Scholar 

  • Pence NS, Lasen PB, Ebbs SD, Letham DLD, Last MM, Garvin DF (2000) The molecular physiology of heavy metal transport in Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97(9):4956–4960

    Article  CAS  PubMed  Google Scholar 

  • Perrin Y, Vaquero C, Gerrard I, Sack M, Drossard J, Stoger E, Christou P, Fischer R (2000) Transgenic pea seeds as bioreactors for the production of a single-chain Fv fragment (scFV) antibody used in cancer diagnosis and therapy. Mol Breed 6:345–352

    Article  CAS  Google Scholar 

  • Persans MW, Nieman K, Salat DE (2001) Functional activity and role cation-efflux family members in Ni hyper accumulation in Thlaspi goesingense. Proc Natl Acad Sci USA 98:9995–10000

    Article  CAS  PubMed  Google Scholar 

  • Pilon M, Owen JD, Garifullina GF, Kurihara T, Mihara H, Esaki N, Pilon-Smits EAH (2003) Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase. Plant Physiol 131:1250–1257

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EA, Hwang S, Mel Lytle C, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP surfurylasev in Indian mustard leads to increased selenate uptake, reduction and tolerance. Plant Physiol 119(1):123–132

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH, Zhu YL, Sears T, Terry N (2000) Overexpression of glutathione reductase in Brassica juncea: effects on cadmium accumulation and tolerance. Physiol Plant 110:455–460

    Article  CAS  Google Scholar 

  • Pollard SJT, Hrudey SE, Fedorak PM (1994) Bioremediation of petroleum- and creosote-contaminated soils: a review of constraints. Waste Manag Res 12(2):173–194

    CAS  Google Scholar 

  • Ponstein AS, Bade JB, Verwoerd TC, Molendijk L, Storms J, Beudeker RF, Pen J (2002) Stable expression of Phytase (phyA) in canola (Brassica napus) seeds: towards a commercial product. Mol Breed 10:31–44

    Article  CAS  Google Scholar 

  • Pulford I, Watson C (2003) Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci 21(5):439–456

    Google Scholar 

  • Ramaswami A, Rubin E, Bonola S (2003) Non-significance of rhizosphere degradation during phytoremediation of MTBE. Int J Phytoremediation 5(4):315–331

    CAS  PubMed  Google Scholar 

  • Raskin I (1996) Plant genetic engineering may help with environmental cleanup. Proc Natl Acad Sci USA 93:3164–3166

    Article  CAS  PubMed  Google Scholar 

  • Raskin I, Nanda Kumar PBA, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    Article  CAS  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    Article  CAS  PubMed  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, USA, pp 193–229

    Google Scholar 

  • Renneberg A, Dudas J (2001) Transformation of elemental mercury to inorganic and organic mercury and hydrocarbon co-contaminated soils. Chemosphere 45(6–7):1103–1109

    Article  CAS  PubMed  Google Scholar 

  • Ries G, Heller W, Puchta H, Sandermann H, Seidlitz HK, Hohn B (2000) Elevated UV-B radiation reduces genome stability in plants. Nature 406:98–101

    Article  CAS  PubMed  Google Scholar 

  • Ruggiero F, Exposito JY, Bournat P, Gruber V, Perret S, Comte J, Olagnier B, Garrone R, Theisen M (2000) Triple helix assembly and processing of human collagen produced in transgenic tobacco plants. FEBS Lett 469:132–136

    Article  CAS  PubMed  Google Scholar 

  • Rugh CL (2001) Mercury detoxification with transgenic plants and other biotechnological breakthroughs for phytoremediation. In Vitro Cell Mol Dev Plant 37(3):321–325

    Article  CAS  Google Scholar 

  • Rugh CL, Wilde D, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana merA gene. Proc Natl Acad Sci USA 93:3182–3187

    Article  CAS  PubMed  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    Article  CAS  PubMed  Google Scholar 

  • Ruiz JN, Romero L (2002) First evidence of arsenic phytoremediation. Trends Plant Sci 7(9):384

    Article  Google Scholar 

  • Ruiz ON, Hissein HS, Terry N, Daniell H (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol 132:1344 1352

    Article  CAS  PubMed  Google Scholar 

  • Sadowsky MJ (1999) Phytoremediation: past promises and future. In: Bell CR, Brylinsky M, Jhonson-Green P (eds) Microbial biosystems: new frontiers, section-plant microbe interactions. Proc 8th Int Symp of Microbiol. Atlantic Canada Soc Microbial Ecol, Halifax, Canada, pp 1–7. http://socrates.acadiau.ca/isme/Symposium26/sadowsky.PDF. Accessed 16 Jul 2008

  • Salt DE, Blaylock M, Kumar NPBA, Dushnekov V, Ensley BD, Chet I, Raskin I (1995) Phytor-emediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13:468–474

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  PubMed  Google Scholar 

  • Scheller J, Conrad U (2005) Plant based material, protein and biodegradable plastic. Curr Opin Plant Biol 8:188–196

    Article  CAS  PubMed  Google Scholar 

  • Schnoor J (1997) Phytoremediation: ground water remediation technologies analysis center evaluation report, TE-98-01, p 37

    Google Scholar 

  • Schnoor JL, Licht LA, Mc Cutcheon SC, Wofe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318–323

    Article  Google Scholar 

  • Shann JR (1995) The role of plant/microbial systems in the reduction of exposure. Environ Health Perspect 103(5):13–15

    Article  PubMed  Google Scholar 

  • Shaul O, Hilgemann DW, de Almeida-Engler J, van Montagu M, Inze D, Galili G (1999) Cloning and characterization of a novel Mg+2/H+ exchanger. EMBO J 18:3973–3980

    Article  CAS  PubMed  Google Scholar 

  • Shimizu M, Kimura T, Koyama T, Suzuki K, Ogawa N, Miyashita K, Sakka K, Ohmiya K (2002) Molecular breeding of transgenic rice plants expressing bacterial chlorocatechol dioxygenase gene. Appl Environ Microbiol 68(8):4061–4066

    Article  CAS  PubMed  Google Scholar 

  • Simon L, Martin HW, Adriano DC (1996) Chicory (Cichorium intybus L.) and dandelion (Taraxacum officinale Web.) as phytoindicators of cadmium contamination. Water Air Soil Pollut 91(3–4):351–362

    Article  CAS  Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley, NY, USA, pp 1–15

    Google Scholar 

  • Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    Article  CAS  PubMed  Google Scholar 

  • Sonoki S, Fujihiro S, Hisamatsu S (2007) Genetic engineering of plants for phytoremediation of polychlorinated biphenyls. In: Willey N (ed) Phytoremediation: methods and reviews. Humana Press, New Jersey, USA, pp 3–13

    Chapter  Google Scholar 

  • Stabili L, Licciano M, Giangrande A, Fanelli G, Cavallo RA (2006) Sabella spallanzanii filterfeeding on bacterial community: ecological implications and applications. Mar Environ Res 61(1):74–92

    Article  CAS  PubMed  Google Scholar 

  • Stearns JC, Shah S, Glick BR (2007) Increasing plant tolerance to metals in the environment. In: Willey N (ed) Phytoremediation: methods and reviews. Humana Press, New Jersey, USA, pp 15–26

    Chapter  Google Scholar 

  • Stoger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J, Williams S, Keen D, Perrin Y, Christou P, Fischer R (2000) Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol 42:583–590

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Kaplan B, Bouche N, Arazi T, Dolev D, Talke IN, Frans JM, Maathuis FJM, Sanders D, Bouchez D, Fromm H (2000) Expression of truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arbaidopsis CNGC1 gene confers Pb+2 tolerance. Plant J 24(4):533–542

    Article  CAS  PubMed  Google Scholar 

  • Suresh B, Ravishankar GA (2004) Phytoremediation- a novel and promising approach for environmental clean up. Crit Rev Biotechnol 24(2–3):97–124

    Article  CAS  PubMed  Google Scholar 

  • Sursala S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18(5):647–658

    Article  Google Scholar 

  • Sykes M, Yang V, Blankenburg J, AbuBakr S (1999) Biotechnology: working with nature to improve forest resources and products. In: Proc TAPPI Int Pulping Conf, vol 2, April 18–22, 1999, Nashville, TN. TAPPI Press, Atlanta, GA, pp 631–637

    Google Scholar 

  • Terry N, Sambukumar SV, LeDuc DL (2003) Biotechnological approaches for enhancing phytor- emediation of heavy metals and metalloids. Acta Biotechnol 23(2–3):282–288

    Google Scholar 

  • Thomas JC, Davies EC, Malick FK, Endreszl C, Williams CR, Abbas M, Petrella S, Swisher K, Perron M, Edwards R, Ostenkowski P, Urbanczyk N, Wiesend WN, Murray KS (2003) Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils. Biotechnol Prog 19(2):273–280

    Article  CAS  PubMed  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and ion transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996

    Article  CAS  PubMed  Google Scholar 

  • Thompson P, Ramer L, Guffey AP, Schnoor JL (1998) Decreased transpiration in poplar trees exposed to 2, 4, 6,-trinitrotoluene. Environ Toxicol Chem 17:902–906

    Article  CAS  Google Scholar 

  • Tong Y-P, Kneer R, Zhu Y-G (2004) Vascular compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends Plant Sci 9:7–9

    Article  CAS  PubMed  Google Scholar 

  • Torres E, Vaquero C, Nicholson L, Sack M, Stoger E, Drossard J, Christou P, Fischer R, Perrin Y (1999) Rice cell culture as an alternative production system for functional diagnostic and therapeutic antibodies. Transgenic Res 8:441–449

    Article  CAS  PubMed  Google Scholar 

  • Trapp S, Karlson U (2001) Aspects of phytoremediation of organic pollutants. J Soils Sediments 1:1–7

    Article  Google Scholar 

  • Vacchina V, Mari S, Czernic P, Marques L, Pianeli K, Schaumloffe D, Lebru M, Lobinski R (2003) Speciation of nickel in a hyperaccumulating plant by high-performance liquid chroma- tography-inductively couple plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation. Anal Chem 75:2740–2745

    Article  CAS  PubMed  Google Scholar 

  • Van der Auwera G, Baute J, Bauwens M, Peck I, Piette D, Pycke M, Asselman P, Depicker A (2008) Development and application of novel constructs to score C:G-t0T: a transitions and homologous recombination in Arabidopsis. Plant J 45:908–916

    Google Scholar 

  • Van der Zaal BJ, Neuteboom LW, Pinas JE, Chadonnens AN, Schat H, Verkleij JAC, Hooykaas PJJ (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animal can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055

    Article  PubMed  Google Scholar 

  • Vroblesky DA, Nietch CT, Morris JT (1999) Chlorinated ethanes from groundwater in tree trunks. Environ Sci Technol 33:277–281

    Article  Google Scholar 

  • Wagner-Dobler I (2003) Pilot plant for bioremediation of mercury-containing industrial waste- water. Appl Microbiol Biotechnol 62:124–133

    Article  CAS  PubMed  Google Scholar 

  • Walmsley AM, Arntzen CJ (2000) Plants for delivery of edible vaccines. Curr Opin Biotechnol 11:126–129

    Article  CAS  PubMed  Google Scholar 

  • Wang G-D, Chen X-Y (2007) Detoxification of soil phenolic pollutants by plant secretory enzyme. In: Willey N (ed) Phytoremediation: methods and reviews. Humana Press, New Jersey, USA, pp 49–57

    Chapter  Google Scholar 

  • White C, Shaman AK, Gadd GM (1998) An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nat Biotechnol 16:572–575

    Article  CAS  PubMed  Google Scholar 

  • Willey N (2007) Phytoremediation: methods and reviews. Humana Press, New Jersey, USA, pp 351–468

    Book  Google Scholar 

  • Wrobel M, Zebrowski J, Szopa J (2004) Polyhydroxybutyrate synthesis in transgenic flax. J Biotechnol 107:41–54

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Ishige T, Shiota N, Inui H, Ohkawa H, Ohkawa Y (2002) Enhancement of metabolizing herbicides in young tubers of transgenic potato plants with the rat CYP1A1 gene. Theor Appl Genet 105:515–520

    Article  CAS  PubMed  Google Scholar 

  • Yoon JM, Oh B-T, Just CL, Schnoor JL (2002) Uptake and leaching of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine by hybrid poplar trees. Environ Sci Technol 36:4649–4655

    Article  CAS  PubMed  Google Scholar 

  • Zayed A (2004) Phytoremediation: advances toward a new clean up technology. In: Goodman RE (ed) Encyclopaedia of plant crop science. Taylor and Francis, Oxford, UK, pp 924–927: doi:10.1081/E-EPCS 120005584

    Google Scholar 

  • Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 121:1169–1178

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Kovalchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Basu, S.K., Eudes, F., Kovalchuk, I. (2010). Biotech Crops for Ecology and Environment. In: Kole, C., Michler, C.H., Abbott, A.G., Hall, T.C. (eds) Transgenic Crop Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04812-8_8

Download citation

Publish with us

Policies and ethics