Skip to main content

Silencing as a Tool for Transgenic Crop Improvement

  • Chapter
Transgenic Crop Plants
  • 1315 Accesses

Abstract

RNA silencing, also known as post-transcriptional gene silencing (PTGS) or RNA interference (RNAi), is a form of RNA degradation believed to be an important defense against foreign nucleic acids (Waterhouse et al. 2001). It was initially discovered in plants and was thought to function as part of a defense mechanism against viruses (Ratcliff et al. 1997). Subsequently, it was shown to be a common gene-silencing mechanism occurring in all eukaryotes, including plants and animals. The term RNAi was coined for the phenomenon when it was observed in the nematode Caenorhabditis elegans (Fire et al. 1998). However, this phenomenon of RNAi (PTGS) had actually been reported previously in transgenic petunia but was referred to as cosuppression, because transformation with a sense chalcone synthase transgene suppressed the expression of both the transgene and the endogenous gene (Napoli et al. 1990). It is now widely accepted that dsRNA is the effective trigger of PTGS/RNAi in plants and that this process operates by sequence-specific degradation (Kusaba 2004). Several milestones related to RNAi-based silencing are summarized in Table 6.1. In plants, cosuppression, PTGS, and virus-induced gene silencing (VIGS), all describe a homology-dependent gene-silencing phenomenon that involves what is more broadly known as RNAi. The science of RNAi broadly includes a few different and diverse RNA-silencing pathways that alter the expression levels of specific genes in plants, mediate the amplification and mobile signal mechanisms in RNAi pathways, and yield RNA-mediated DNA methylation (Baulcombe 2004; Lippman and Martienssen 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bakhetia M, Charlton WL, Urwin PE, McPherson MJ, Atkinson HJ (2005) RNA interference and plant parasitic nematodes. Trends Plant Sci 10:362–367

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  • Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  CAS  PubMed  Google Scholar 

  • Chen XY, Chen Y, Heinstein P, Davisson VJ (1995) Cloning, expression and characterization of (+)-δ-candinene synthase: a catalyst for cotton phytoalexin biosynthesis. Arch Biochem Biophys 324:255–266

    Article  CAS  PubMed  Google Scholar 

  • Davuluri GR, Tuinen AV, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HMJ, Bowler C (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895

    Article  CAS  PubMed  Google Scholar 

  • Eady CC, Kamoi T, Kato M, Porter NG, Davis S, Shaw M, Kamoi A, Imai S (2008) Silencing onion lachrymatory factor synthase causes a significant change in the sulfur secondary metabolite profile. Plant Physiol 147:2096–2106

    Article  CAS  PubMed  Google Scholar 

  • Eamens A, Wang MB, Smith NA, Waterhouse PM (2008) RNA silencing in plants: yesterday, today and tomorrow. Plant Physiol 147:456–468

    Article  CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Flores T, Karpova O, Su X, Zeng P, Bilyeu K, Sleper DA, Nguyen HT, Zhang ZJ (2008) Silencing of Gm FAD3 gene by siRNA leads to low a-linolenic acids (18:3) of fad3 -mutant phenotype in soybean [Glycine max (Merr.)]. Transgenic Res 17:839–850

    Article  CAS  PubMed  Google Scholar 

  • Fuchs M, Gonsalves D (2007) Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Annu Rev Phytopathol 45:173–202

    Article  CAS  PubMed  Google Scholar 

  • Gordon KH, Waterhouse PM (2007) RNAi for insect-proof plants. Nat Biotechnol 25:1231–1232

    Article  CAS  PubMed  Google Scholar 

  • Helliwell CA, Wesley SV, Wielopolska AJ, Waterhouse PM (2002) High-throughput vectors for efficient gene silencing in plants. Funct Plant Biol 29:1217–1225

    Article  CAS  Google Scholar 

  • Henikoff S, Till BJ, Comai L (2004) TILLING: traditional mutagenesis meets functional genomics. Plant Physiol 135:630–636

    Article  CAS  PubMed  Google Scholar 

  • Huang GZ, Allen R, Davis EL, Baum TJ, Hussey RS (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci USA 103:14302–14306

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen K, Bak S, Busk PK, Sorensen C, Olsen CE, Puonti-Kaerlas J, Moller BL (2005) Cassava plants with depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology. Plant Physiol 139:363–374

    Google Scholar 

  • Kusaba M (2004) RNA interference in crop plants. Curr Opin Biotechnol 15:139–143

    Article  CAS  PubMed  Google Scholar 

  • Lippman Z, Martienssen R (2004) The role of RNA interference in heterochromatic silencing. Nature 431:364–369

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Singh SP, Green AG (2002) High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol 129:1732–1743

    Article  CAS  PubMed  Google Scholar 

  • Mansoor S, Amin I, Hussain M, Zafar Y, Briddon RW (2006) Engineering novel traits in plants through RNA interference. Trends Plant Sci 11:559–565

    Article  CAS  PubMed  Google Scholar 

  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Matthew L (2009) Hairpin RNAi in plants. In: Doran T, Helliwell C (eds) RNA interference: methods for plants and animals. CAB Int Publ, Wallingford, pp 1–25

    Google Scholar 

  • Matzke M, Kanno T, Huettel B, Daxinger L, Matzke AJ (2007) Targets of RNA-directed DNA methylation. Curr Opin Plant Biol 10:512–519

    Article  CAS  PubMed  Google Scholar 

  • Minorsky PV (2008) On the Inside. Plant Physiol 147:1761–1762

    Article  CAS  Google Scholar 

  • Missiou A, Kalantidis K, Boutla A, Tzortzakak S, Tabler M, Tsagris M (2004) Generation of transgenic potato plants highly resistant to Potato Virus Y (PVY) through RNA silencing. Mol Breed 14:185–197

    Article  CAS  Google Scholar 

  • Mottram DS, Wedzicha BL, Dodson AT (2002) Acrylamide is formed in the Maillard reaction. Nature 419:448–449

    Article  CAS  PubMed  Google Scholar 

  • Napoli C, Lemieux C, Jogensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  PubMed  Google Scholar 

  • Ogita S, Uefuji H, Morimoto M, Sano H (2005) Metabolic engineering of caffeine production. Plant Biotechnol 22:461–468

    CAS  Google Scholar 

  • Ogita S, Uefuji H, Yamaguchi Y, Koizumi N, Sano H (2003) RNA Interference: producing decaffeinated coffee plants. Nature 423:823

    Article  CAS  PubMed  Google Scholar 

  • Pooggin M, Shivaprasad PV, Veluthambi K, Thomas H (2003) RNAi targeting of DNA virus in plants. Nat Biotechnol 21:131–132

    Article  CAS  PubMed  Google Scholar 

  • Powell-Abel P, Nelson RS, De B, Hoffmann N, Rogers SG (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743

    Article  Google Scholar 

  • Preuss S, Pikkard CS (2003) Targeted gene silencing in plants using RNA interference. In: Engelke D (ed) RNA Interference (RNAi): nuts and bolts of siRNA technology. DNA Press, Philadelphia, PA, pp 23–36

    Google Scholar 

  • Price DRG, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26:393–400

    Article  CAS  PubMed  Google Scholar 

  • Qu J, Ye J, Fang R (2007) Artificial microRNA-mediated virus resistance in plants. J Virol 81:6690–6699

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran V, Chen X (2008) Small RNA metabolism in Arabidopsis. Trends Plant Sci 13:368–374

    Article  CAS  PubMed  Google Scholar 

  • Ratcliff F, Harrison BD, Baulcombe DC (1997) A similarity between viral defense and gene silencing in plants. Science 276:1558–1560

    Article  CAS  PubMed  Google Scholar 

  • Rommens CM (2004) All-native DNA transformation: a new approach to plant genetic engineering. Trends Plant Sci 9:457–464

    Article  CAS  PubMed  Google Scholar 

  • Rommens CM, Yan H, Swords K, Richael C, Ye J (2008) Low-acrylamide French fries and potato chips. Plant Biotechnol J 6:843–853

    Article  CAS  PubMed  Google Scholar 

  • Sharp PA (1999) RNAi and double-strand RNA. Genes Dev 13:139–141

    Article  CAS  PubMed  Google Scholar 

  • Small I (2007) RNAi for revealing and engineering plant gene functions. Curr Opin Biotechnol 18:148–153

    Article  CAS  PubMed  Google Scholar 

  • Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Gene expression: total silencing by intron-spliced hairpin RNAs. Nature 407:319–332

    Article  CAS  PubMed  Google Scholar 

  • Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA 103:18054–18059

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Nakamura N, Togami J (2005) Altering flower color in transgenic plants by RNAI-mediated engineering of flavonoid biosynthetic pathway. In: Barik S (ed) Methods in molecular biology: RNAi: design and application. Humana Press, Totowa, NJ, pp 245–257

    Google Scholar 

  • Tang G, Galili G (2004) Using RNAi to improve plant nutritional value: from mechanism to application. Trends Biotechnol 22:463–469

    Article  CAS  PubMed  Google Scholar 

  • Tareke E, Rydberg P, Karlsson S, Tornquist M (2002) Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem 50:4998–5006

    Article  CAS  PubMed  Google Scholar 

  • Townsend BJ, Llewellyn DJ (2007) Reduced terpene levels in cottonseed add food to fiber. Trends Biotechnol 25:239–241

    Article  CAS  PubMed  Google Scholar 

  • Vazquez F (2006) Arabidopsis endogenous small RNAs: highways and byways. Trends Plant Sci 11:460–468

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17:449–459

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O, Vain P, Angell S, Baulcombe DC (1998) Systemic spread of sequence-specific transgene RNA degradation is initiated by localised introduction of ectopic promoterless DNA. Cell 95:177–187

    Article  CAS  PubMed  Google Scholar 

  • Wang MB, Abbott DC, Waterhouse PM (2000) A single copy of virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf mosaic virus. Mol Plant Pathol 1:347–356

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Iyer LM, Pancholy R, Shi X, Hall TC (2005) Assessment of penetrance and expressivity of RNAi-mediated silencing of Arabidopsis phytoene desaturase gene. New Phytol 167:751–760

    Article  CAS  PubMed  Google Scholar 

  • Warthmann N, Chen H, Ossowski S, Weigel D, Hervé P (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS ONE 3(3):e1829

    Article  PubMed  Google Scholar 

  • Waterhouse PM, Graham MW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse PM, Helliwell CA (2003) Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet 4:29–38

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse PM, Ming-Bo W, Lough T (2001) Gene silencing as an adaptive defense against viruses. Nature 411:834–842

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Zhang Y, Kang L, Roossinck MJ, Mysore KS (2006) Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants. Plant Physiol 142:429–440

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Chretien R, Ye J, Rommens CM (2006) New construct approaches for efficient gene silencing in plants. Plant Physiol 141:1508–1518

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pudota B Bhaskar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhaskar, P.B., Jiang, J. (2010). Silencing as a Tool for Transgenic Crop Improvement. In: Kole, C., Michler, C.H., Abbott, A.G., Hall, T.C. (eds) Transgenic Crop Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04809-8_6

Download citation

Publish with us

Policies and ethics