Skip to main content

Metabolic Engineering of Pathways and Gene Discovery

  • Chapter
Transgenic Crop Plants

Abstract

Humans have been manipulating the genetic information of plants throughout the history of agriculture. In this respect, every new plant variety or animal race is a result of the introduction of novel metabolic changes. This process has been slowly advancing for millennia. However, with the discovery of biochemical pathways and later with the introduction of gene manipulation techniques in 1970s, the pace greatly speeded up. Already in the mid-1980s, many of the compounds and enzymes participating in metabolic pathways were linked to their cloned genes, which can then be used for engineering the plant metabolism. Soon, novel products from plants appeared including, vaccines and other pharmaceuticals, plastics, and proteins that may render certain plants as effective tools for environmental decontamination. These products were a result of the manipulation of plant endogenous biochemical pathways and thus the novel field of science-metabolic engineering was born. Metabolic engineering can be defined as the targeted and purposeful modification of metabolic pathways in an organism for the improved use of cellular pathways for chemical transformation, energy transduction, and macromolecular synthesis or breakdown, potentially benefiting the society by producing biological substitutes for toxic chemicals, increasing agricultural production, improving industrial fermentation processes, producing completely new compounds, or by understanding the molecular mechanism underlying medical conditions in order to develop new cures (Kurnaz 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaddi A, Domergue F, Bauer J, Napier J, Welti R, Zahringer U, Cirpus P, Heinz E (2004) Biosynthesis of very long chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant cell 16:2734–2748

    Article  Google Scholar 

  • Aida R, Kishimoto S, Tanaka Y, Shibata M (2000) Modification of flower color in torenia (Torenia fournieri Lind.) by genetic transformation. Plant Sci 153:33–42

    Article  CAS  Google Scholar 

  • Akashi T, Fukuchi-Mizutani M, Aoki T, Ueyama Y, Yonekura-Sakakibara K, Tanaka Y, Kusumi T, Ayabe S (1999) Molecular cloning and biochemical characterization of a novel cytochrome P450, flavone synthase II, that catalyzes direct conversion of flavanones to flavones. Plant Cell Physiol 40:1182–1186

    CAS  PubMed  Google Scholar 

  • Alabadi D, Carbonell J (1998) Expression of ornithine decarboxylase is transiently increased bypollination, 2, 4-Dichlorophenoxyacetic acid and gibberellic acid in tomato ovaries. Plant Physiol 118:323–328

    Article  CAS  PubMed  Google Scholar 

  • Anai T, Koga M, Tanaka H, Kinoshita T, Rahman S, Takagi Y (2003) Improvement of rice (Oryza sativa L.) seed oil quality through introduction of a soybean microsomal omega-3 fatty acid desaturase gene. Plant Cell Rep 21:988–992

    Article  CAS  PubMed  Google Scholar 

  • Andersson-Gunneras S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y, Coutinho PM, Nillson P, Henrissat B, Moritz T, Sundberg B (2006) Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J 45:144–165

    Article  PubMed  CAS  Google Scholar 

  • Arai Y, Nakashita H, Doi Y, Yamaguchi I (2001) Plastid targeting of polyhydroxybutyrate biosynthetic pathway in tobacco. Plant Biotechnol 18:289–293

    CAS  Google Scholar 

  • Arioli T, Peng L, Betzner A, Burn J, Wittke W, Herth W, Camillerie C, Hoffe H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson R (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720

    Article  CAS  PubMed  Google Scholar 

  • Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675

    Article  CAS  PubMed  Google Scholar 

  • Bailey JE, Sburlati A, Hatzimanikatis V, Lee K, Renner WA, Tsai PS (1996) Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol Bioeng 52:109–121

    Article  CAS  PubMed  Google Scholar 

  • Barta A, Sommergruber K, Thomson D (1986) The expression of a nopaline synthase- human growth hormone chimeric gene in transformed tobacco and sunflower callus tissue. Plant Mol Biol 6:347–357

    Article  CAS  Google Scholar 

  • Bhattacharya E, Rajam M (2007) Polyamine biosynthetic pathway: a potential target for alkaloid production. In: Verpoorte R, Alfermann A, Johnson T (eds) Applications of plant metabolic engineering. Springer, Dordrecht, pp 129–143

    Chapter  Google Scholar 

  • Bock R, Khan MS (2004) Taming plastids for a green future. Trends Biotechnol 22:311–318

    Article  CAS  PubMed  Google Scholar 

  • Bohm BA (1998) Introduction to Flavonoids, 1st edn. Taylor and Francis, London

    Google Scholar 

  • Bordetsky A, Hwang R, Korin A, Lovaas D, Tonachel L (2005) Securing America: solving our oil dependence through innovation. Natural Resources Defense Council, New York

    Google Scholar 

  • Bovy A, de Vos R, Kemper M, Schiljen E, Almenar Pertejo M, Muir S, Collins G, Robinson S, Verhoyen M, Hughes S (2002) High-flavanol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant cell 14:2509–2526

    Article  CAS  PubMed  Google Scholar 

  • Broun P (2004) Transcription factors as tools for metabolic engineering in plants. Curr Opin Plant Biol 7:202–209

    Article  CAS  PubMed  Google Scholar 

  • Broun P, Poindexter P, Osborne E, Jiang C-Z, Riechmann J (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA 101:4706–4711

    Article  CAS  PubMed  Google Scholar 

  • Burn J, Hocart C, Birch R, Cork A, Williamson R (2002) Functional analysis of the cellulose synthase genes CesA1, CesA2, and CesA3 in Arabidopsis. Plant Physiol 129:797–807

    Article  CAS  PubMed  Google Scholar 

  • Cahoon E, Hall S, Ripp K, Ganzke T, Hitz W, Couglan S (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Bio-technol 21:1082–1087

    Article  CAS  Google Scholar 

  • Capell T, Christou T (2004) Progress in plant metabolic engineering. Curr Opin Biotechnol 15:148–154

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay M, Gupta S, Sengupta D (1997) Expression of arginine decarboxylase in seedlings of indica rice (Oryza sativa L.) cultivars as affected by salinity stress. Plant Mol Biol 34:477–483

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Current Opin Plant Biol 5:250–257

    Article  CAS  Google Scholar 

  • Cornwell T, Cohick W, Raskin I (2004) Dietary phytoestrogens and health. Phytochemistry 65:995–1016

    Article  CAS  PubMed  Google Scholar 

  • Damude H, Kinney A (2007) Mertabolic engineering of seed oil biosynthetic pathways for human health. In: Verpoorte R, Alfermann A, Johnson T (eds) Applications of Plant Metabolic Engineering. Springer, Dordrecht, The Netherlands, pp 237–247

    Chapter  Google Scholar 

  • Damude H, Yadav N (2005) Cloning and sequences of fungal δ—15 desaturases suitable for production of polyunsaturated fatty acids in oilseed plants for food or industrial uses. In: PCT Int ApplWO2005047479

    Google Scholar 

  • Damude H, Zhang H, Farrall L (2004) Identification of bifunctional δ12/ω3 fatty acid desaturases for improving the ratio of o3 to o6 fatty acids in microbes and plants. Proc Natl Acad Sci USA 103:9446–9451

    Article  CAS  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Guda C, McPherson DT, Zhang X, Xu J, Urry DW (1997) Hyperexpression of a synthetic protein-based polymer gene. Methods Mol Biol 63:359–371

    CAS  PubMed  Google Scholar 

  • Daniell H, Streatfield SJ, Wycoff K (2001a) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Wiebe PO, Millan AF (2001b) Antibiotic-free chloroplast genetic engineering — an environmentally friendly approach. Trends Plant Sci 6:237–239

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Chebolu S, Kumar S, Singleton M, Falconer R (2005a) Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine 23:1779–1783

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Kumar S, Dufourmantel N (2005b) Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol 23:238–245

    Article  CAS  PubMed  Google Scholar 

  • Datta K, Baisakh N, Oliva N, Torrizo L, Abrigo E, Tan J, Rai M, Rehana S, A-B S, Beyer P, Potrykus I, Datta S (2003) Bioengineered golden Indica rice cultivars with beta-carotene metabolism in the endosperm with hygromycin and mannose selection systems. Plant Biotechnol J 1:81–90

    Article  CAS  PubMed  Google Scholar 

  • De Zoeten G, Penwick J, Horisberger M (1989) The expression, localization and effect of ahuman interferon in plants. Virology 172:213–222

    Article  PubMed  Google Scholar 

  • Del Vecchio A (1996) High laurate canola. Inform 7:230–243

    Google Scholar 

  • Delgado J, Liao JC (1997) Inverse flux analysis for reduction of acetate excretion in Escherichia coli. Biotechnol Prog 13:361–367

    Article  CAS  PubMed  Google Scholar 

  • Dellapenna D (2007) Biofortification of plant-based food: enhancing folate levels by metabolic engineering. Proc Natl Acad Sci USA 104:3675–3676

    Article  CAS  PubMed  Google Scholar 

  • Dewick PM (1994) The Flavonoids: Advances in Research since 1986. In: Harborne JB (ed) The Flavonoids: Advances in Research. Chapman and Hall, London, New York, pp 117–232

    Google Scholar 

  • Diaz de la Garza R, Gregory J, Hanson A (2007) Folate biofortification of tomato fruit. Proc Natl Acad Sci USA 104:4218–4222

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids — a gold mine for metabolic engineering. Trends Plant Sci 4:394–400

    Article  PubMed  Google Scholar 

  • Dixon RA, Sumner LW (2003) Legume natural products: understanding and manipulating complex pathways for human and animal health. Plant Physiol 131:878–885

    Article  CAS  PubMed  Google Scholar 

  • Drexler H, Spiekermann P, Meyer A, Domergue F, Zank T, Sperling P, Abaddi A, Heinz E (2003) Metabolic engineering of fatty acids for breeding of new oilseed crops: strategies, problems and first results. J Plant Physiol 160:779–802

    Article  CAS  PubMed  Google Scholar 

  • Dufourmantel N, Tissot G, Goutorbe F, Garcon F, Muhr C, Jansens S, Pelissier B, Peltier G, Dubald M (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol 58:659–668

    Article  CAS  PubMed  Google Scholar 

  • During K (1988) Wound-inducible expression and secretion of T4 lysozyme and monoclonal antibodies in Nicotiana tabacum. PhD thesis. Mathematish-Naturwissenschaftlichen Fakultaet der Universitaet Zu Koeln

    Google Scholar 

  • Ebel J, Schmidt WE, Loyal R (1986) Phytoalexin synthesis: the biochemical analysis of the induction process. Annu Rev Phytopathol 24:235–264

    Article  CAS  Google Scholar 

  • Ellestad G (2006) Structure and chiroptical properties of supramolecular flower pigments. Chirality 18:134–144

    Article  CAS  PubMed  Google Scholar 

  • Elomaa P, Holton T (1994) Modification of flower color using genetic engineering. Biotechnol Genet Eng Rev 12:63–88

    CAS  Google Scholar 

  • Emani C, Jiang Y, Miro B, Hall T, Kohli A (2008) Rice. In: Kole C, Hall T (eds) Compendium of transgenic crop plants, vol 1, Cereals and forage grasses. Wiley-Blackwell, Oxford, pp 1–47

    Google Scholar 

  • Ferguson BJ, Mathesius U (2003) Signaling interactions during nodule development. J Plant Growth Reg 22:47–72

    Article  CAS  Google Scholar 

  • Fernandez-San Millan A, Mingo-Castel A, Miller M, Daniell H (2003) A chloroplast transgenic approach to hyper-express and purify Human Serum Albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol J 1:71–79

    Article  Google Scholar 

  • Fischer R, Emans N (2000) Molecular farming of pharmaceutical proteins. Transgenic Res 9:279–299

    Article  CAS  PubMed  Google Scholar 

  • Forkmann G (1991) Flavonoids as flower pigments: the formation of the natural spectrum and its extension by genetic engineering. Plant Breed 106:1–26

    Article  CAS  Google Scholar 

  • Forkmann G, Heller W, Grisebach H (1980) Anthocyanin biosynthesis in flowers of Matthiola incana flavanone 3- and flavonoid 3′-hydroxylases. Z Naturforsch C 35:691–695

    Google Scholar 

  • Fraley R, Rogers S, Horsch R (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807

    Article  CAS  PubMed  Google Scholar 

  • Fujita N, Kubo A, Suh D, Wong K, Jane J, Ozawa K, Takaiwa F, Inaba Y, Nakamura Y (2003) Antisense inhibition of isoamylase alters the structure of amylopectin and the physicochemical properties of starch in rice endosperm. Plant Cell Physiol 44:607–618

    Article  CAS  PubMed  Google Scholar 

  • Fukada-Tanaka S, Inagaki Y, Yamaguchi T, Saito N, Iida S (2000) Color-enhancing protein in blue petals. Nature 407:581

    Article  Google Scholar 

  • Fukui Y, Tanaka Y, Kusumi T, Iwashita T, Nomoto K (2003) A rationale for the shift in color towards blue in transgenic carnation flowers expressing the flavonoid 3′, 5′-hydroxylase gene. Phytochemistry 63:15–23

    Article  CAS  PubMed  Google Scholar 

  • Galili G, Hofgen R (2002) Metabolic engineering of amino acids and storage proteins in plants. Metab Eng 4:3–11

    Article  CAS  PubMed  Google Scholar 

  • Goff S, Klein T, Roth B, Fromm M, Cone K, Radicella J, Chandler V (1990) Transactivation of anthocyanin in biosynthetic genes following transfer of B regulatory genes into maize tissues. EMBO J 9:2517–2522

    CAS  PubMed  Google Scholar 

  • Goto T, Kondo T (1991) Structure and molecular stacking of anthocyanins — flower Color variation. Angew Chem 30:17–33

    Article  Google Scholar 

  • Graham TL, Graham MY (1996) Signaling in soybean phenylpropanoid responses (dissection of primary, secondary, and conditioning effects of light, wounding, and elicitor treatments). Plant Physiol 110:1123–1133

    CAS  PubMed  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    Article  CAS  PubMed  Google Scholar 

  • Hale K, McGrath S, Lombi E, Stack S, Terry N, Pickering I, George G, Pilon-Smits E (2001) Molybdenum sequestration in Brassica species. A role for anthocyanins? Plant Physiol 126:1391–1402

    Article  CAS  PubMed  Google Scholar 

  • Han J, Luhs W, Sonntag K, Zahringer U, Borchardt D, Wolter F, Heinz E, Frentzen M (2001) Functional characterization of β-ketoacyl-CoA synthase genes from Brassica napus L. Plant Mol Biol 46:229–239

    Article  CAS  PubMed  Google Scholar 

  • Haq T, Mason H, Clements J (1995) Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268:714–716

    Article  CAS  PubMed  Google Scholar 

  • Harborne JB (ed) (1988) The Flavonoids: advances in research since 1980. Chapman and Hall, London

    Google Scholar 

  • Harborne JB (ed) (1994) The Flavonoids: advances in research since 1980, 1st edn. Chapman and Hall, London

    Google Scholar 

  • Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto T, Tamaki K, Suzuki K (1998) Molecular cloning of plant spermidine synthases. Plant Cell Physiol 39:73–79

    CAS  PubMed  Google Scholar 

  • Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342:76–78

    Article  CAS  PubMed  Google Scholar 

  • Holton TA, Tanaka Y (1994) Blue roses — a pigment of our imagination? Trends Biotechnol 12:40–42

    Article  Google Scholar 

  • Horsch RB, Fry JE, Hoffman NL, Eicholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Jefferson R, Kavanaugh T, Bevan M (1987) GUS fusion: b-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Johnson ET, Yi H, Shin B, Oh BJ, Cheong H, Choi G (1999) Cymbidium hybrida dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin-type anthocyanins. Plant J 19:81–85

    Article  CAS  PubMed  Google Scholar 

  • Jung W, Yu O, Lau SMC, O'Keefe DP, Odell J, Fader G, McGonigle B (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol 18:208–212

    Article  CAS  PubMed  Google Scholar 

  • Karunanandaa B, Qi Q, Hao M, Baszis S, Jensen P, Wong Y, Jiang J, Venkatramesh M, Gruys K, Moshiri F (2005) Metabolically engineered oilseed crops with enhanced seed tocopherol. Metab Eng 7:384–400

    Article  CAS  PubMed  Google Scholar 

  • Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton T, Mirko K, Noriko N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Tao G, Nehra N, Lu CY, Dyson B, Tsuda S, Ashikari T, Kusumi T, Mason J, Tanaka Y (2007) Engineering of the rose flavanoid biosyn-thetic pathway succesfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48:1589–1600

    Article  CAS  PubMed  Google Scholar 

  • Kawagoe Y, Delmer D (1997) Pathways and genes involved in cellulose biosynthesis. Genet Eng 19:63–87

    CAS  Google Scholar 

  • Kawaoka A, Kaothien P, Yoshida K, Endo S, Yamada K, Ebinuma H (2000) Functional analysis of tobacco LIM protein Ntlim1 involved in lignin biosynthesis. Plant J 22:289–301

    Article  CAS  PubMed  Google Scholar 

  • Kinney A (2006) Metabolic engineering in plants for human health and nutrition. Curr Opin Biotechnol 17:130–138

    CAS  PubMed  Google Scholar 

  • Kinney A, Knowlton S, Blackie L (1998) Designer oils: the high oleic soybean. In: Roller S, Harlander S (eds) Genetic modification in the food industry. Blackie, London, pp 193–213

    Google Scholar 

  • Kinney A, Cahoon E, Damude H (2004) Production of very long chain polyunsaturated fatty acids in oilseed plants. PCT Int ApplWO2004071467

    Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  CAS  PubMed  Google Scholar 

  • Kok-Jacon G, Ji Q, Vincken J-P, Visser R (2003) Towards a more versatile α-glucan synthesis in plants. J Plant Physiol 160:765–777

    Article  Google Scholar 

  • Kondo T, Yoshida K, Nakagawa A, Kawai T, Tamura H, Goto T (1992) Structural basis of blue-color development in flower petals from Commelina communis. Nature 358:515–518

    Article  CAS  Google Scholar 

  • Kota M, Daniell H, Varma S, Garczynski SF, Gould F, Moar WJ (1999) Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc Natl Acad Sci USA 96:1840–1845

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Altabella T, Taylor M (1997) Recent advances in polyamine research. Trends Plant Sci 2:124–130

    Article  Google Scholar 

  • Kumar S, Sharma M, Rajam M (2006) Polyamine biosynthetic pathway as a novel target for potential applications in plant biotechnology. Physiol Mol Biol Plant 12:53–58

    CAS  Google Scholar 

  • Kumar G, Ganapathi T, Srinivas L, Bapat V (2007) Plant molecular farming: host systems, technology and products. In: Verpoorte R, Alfermann A, Johnson T (eds) Applications of plant metabolic engineering. Springer, Dordrecht, pp 45–77

    Chapter  Google Scholar 

  • Kurnaz I (2005) Biochemical modelling tools and applications to metabolic engineering. Turk J Biochem 30:200–207

    CAS  Google Scholar 

  • Kusnadi A, Hood E, Witcher D (1998) Production and purification of two recombinant proteins from transgenic corn. Biotechnol Prog 14:149–155

    Article  CAS  PubMed  Google Scholar 

  • Latchman D (2003) Eukaryotic transcription factors, 4th edn. Academic, San Diego, CA

    Google Scholar 

  • Leelavathi S, Sunnichan VG, Kumria R, Vijaykanth GP, Bhatnagar RK, Reddy VS (2004) A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L.): embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep 22:465–470

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Chen S (2000) Differential accumulation of the S-adenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stress. Theor Appl Genet 100:782–788

    Article  CAS  Google Scholar 

  • Liu J-W, Huang Y-S, DeMichele S, Bergana M, Bobik EJ, Hastilow C, Chuang L-T, Mukerji P, Knutzon D (2001) Evaluation of the seed oils from a canola plant genetically transformed to produce high levels of γ-linoleic acid. In: Hunag Y-S, Ziboh V (eds) γ-linoleic acid: recent advances in biotechnology and clinical applications. AOCS Press, Champaign, IL, pp 61–71

    Google Scholar 

  • Liu Q, Wang Z, Chen X, XL C, Tang S, Yu H, Zhang J, Hong M, Gu M (2003) Stable inheritance of the antisense Waxy gene in transgenic rice with reduced amylose level and improved quality. Transgenic Res 12:71–82

    Article  PubMed  Google Scholar 

  • Lossl A, Eibl C, Harloff HJ, Jung C, Koop HU (2003) Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Rep 21:891–899

    CAS  PubMed  Google Scholar 

  • Magnuson N, Linzmaier P, Reeves R (1998) Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture. Protein Expr Purif 13:45–52

    Article  CAS  PubMed  Google Scholar 

  • Mallik V, Watson M, Malmberg R (1996) A tobacco ornithine decarboxylase partial cDNA clone. J Plant Biochem Biotechnol 5:109–112

    Google Scholar 

  • McBride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P (1995) Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. BioTechnology 13:362–365

    Article  CAS  PubMed  Google Scholar 

  • Mehta R, Cassol T, Li N, Ali N, Handa A, Mattoo A (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20:613–618

    Article  CAS  PubMed  Google Scholar 

  • Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new petunia flower color generated by transformation of a mutant with a maize gene. Nature 330:677–678

    Article  CAS  PubMed  Google Scholar 

  • Micheal A, Furze J, Rhodes M (1996) Molecular cloning and functional identification of a plant ornithine decarboxylase cDNA. Biochem J 314:241–248

    Google Scholar 

  • Mol J, Grotewold E, Koes R (1998) How genes paint flowers and seeds. Trends Plant Sci 3:212–217

    Article  Google Scholar 

  • Mol J, Cornish E, Mason J, Koes R (1999) Novel colored flowers. Curr Opin Biotechnol 10:198–201

    Article  CAS  PubMed  Google Scholar 

  • Murai N, Kemp JD, Sutton DW, Murray MG, Slightom JL, Merlo DJ, Reichert NA, Sengupta-Gopalan C, Stock CA, Barker RF (1983) Phaseolin gene from bean is expressed after transfer to sunflower via tumor-inducing plasmid vectors. Science 222:476–482

    Article  CAS  PubMed  Google Scholar 

  • Murphy D (2002) Biotechnology and the improvement of oil crops-genes, dreams and realities. Phytochem Rev 1:67–77

    Article  CAS  Google Scholar 

  • Nakashita H, Arai Y, Shikanai T, Doi Y, Yamaguchi I (2001) Introduction of bacterial metabolism into higher plants by polycistronic transgene expression. Biosci Biotechnol Biochem 65:1688–1691

    Article  CAS  PubMed  Google Scholar 

  • Ososki AL, Kennelly EJ (2003) Phytoestrogens: a review of the present state of research. Phyt-other Res 17:845–869

    Article  CAS  Google Scholar 

  • Park W, Lee S, Park K (1998) Cloning and characterization of genome clone (Accession no. U64927) encoding S-adenosyl-L-methionine decarboxylase whose gene expression was regulated by light in morning glory (Ipomea nil L.). Plant Physiol 116:867–872

    Article  Google Scholar 

  • Pereira S, Leonard A, Huang Y-S (2004) Identification of two novel microalgal enzymes involved in the conversion of the ω3-fatty acid, eicosapentaenoic acid, into docosahexaenoic acid. Biochem J 384:357–366

    Article  CAS  PubMed  Google Scholar 

  • Perez-Amadour M, Carbonell J (1995) Arginine decarboxylase and putrescine oxidase in ovaries of Pissum sativum L. changes during ovary senescence and early fruit development. Plant Physiol 107:865–872

    Google Scholar 

  • Persson S, Wei H, Milne J, Page GP, Somerville CR (2005) Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci USA 102:8633–8638

    Article  CAS  PubMed  Google Scholar 

  • Polashock JJ, Griesbach RJ, Sullivan RF, Vorsa N (2002) Cloning of a cDNA encoding the cranberry dihydroflavonol-4-reductase (DFR) and expression in transgenic tobacco. Plant Sci 163:241–251

    Article  CAS  Google Scholar 

  • Portis AR Jr, Parry MA (2007) Discoveries in Rubisco (Ribulose 1, 5-bisphosphate carboxylase/ oxygenase): a historical perspective. Photosynth Res 94:121–143

    Article  CAS  PubMed  Google Scholar 

  • Pueppke SG (1996) The genetic and biochemical basis for nodulation of legumes by rhizobia. Crit Rev Biotechnol 16:1–51

    Article  CAS  PubMed  Google Scholar 

  • Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier J, Stobart A, Lazarus C (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22:739–745

    Article  CAS  PubMed  Google Scholar 

  • Quattrocchio F, Verweij W, Kroon A, Spelt C, Mol J, Koes R (2006) PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 18:1274–1291

    Article  CAS  PubMed  Google Scholar 

  • Quesada-Vargas T, Ruiz ON, Daniell H (2005) Characterization of heterologous multigene operons in transgenic chloroplasts: transcription, processing, and translation. Plant Physiol 138:1746–1762

    Article  CAS  PubMed  Google Scholar 

  • Rajam M (1997) Polyamines. In: Prasad M (ed) Plant ecophysiology. Wiley, New York, pp 343–374

    Google Scholar 

  • Rastogi R, Dulson J, Rothstein S (1993) Cloning of tomato (Lycopersicum esculentum Mill.) arginine decarboxylase gene and its expression during fruit ripening. Plant Physiol 103:829–834

    Article  CAS  PubMed  Google Scholar 

  • Regierer B, Fernie A, Springer F, Perez-Melis A, Leisse A, Koehl K, Willmitzer L, Geigenberger P, Kossmann J (2002) Starch content and yield increase as a result of altering adenylate poolsin transgenic plants. Nat Biotechnol 20:1256–1260

    Article  CAS  PubMed  Google Scholar 

  • Ritsema T, Smeekens S (2003) Fructans: beneficial for plants and humans. Curr Opin Plant Biol 6:223–230

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Vargas LI, Schmitthenner AF, Graham TL (1993) Soybean flavonoid effects on and metabolism by Phytophthora sojae. Phytochemistry 32:851–857

    Article  CAS  Google Scholar 

  • Rosche E, Blackmore D, Tegeder M,RichardsonT, Schroeder H, Higgins T, Frommer W, Offler C, Patrick J (2002) Seed-specific overexpression of the potato sucrose transporter increases sucrose uptake and growth rates of developing pea cotyledons. Plant J 30:165–175

    Article  CAS  PubMed  Google Scholar 

  • Ruan Y, Llewellyn D, Furbank R (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15:952–964

    Article  CAS  PubMed  Google Scholar 

  • Ruhlman T, Ahangari R, Devine A, Samsam M, Daniell H (2007) Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts—oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnol J 5:495–510

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Xing A, Ye X, Schweiger B, Kinney A, Graef G, Clemente T (2004) Production of γ-linoleic acid and stearidonic acid in seeds of marker-free transgenic soybean. Crop Sci 44:646–652

    Article  CAS  Google Scholar 

  • Schroeder G, Schroeder J (1995) cDNA for S-adenosyl-L-methionine decarboxylase from Catharanthus roseus, heterologous expression, identification of the proenzyme processing site, evidence for the presence of both subunits in the active enzyme and a conserved region in the 5′ messenger RNA leader. Eur J Biochem 228:74–78

    Article  CAS  Google Scholar 

  • Segal G, Song R, Messing J (2003) A new opaque variant of maize by a single dominant RNA-interference -inducing transgene. Genetics 165:387–397

    CAS  PubMed  Google Scholar 

  • Shiono M, Matsugaki N, Takeda K (2005) Phytochemistry: structure of the blue cornflower pigment. Nature 436:791

    Article  CAS  PubMed  Google Scholar 

  • Shoji K, Miki N, Nakajima N, Momonoi K, Kato C, Yoshida K (2007) Perianth bottom-specific blue color development in Tulip cv. Murasakizuisho requires ferric ions. Plant Cell Physiol 48:243–251

    Article  CAS  PubMed  Google Scholar 

  • Sijmons P, Dekker B, Schrammeijer B (1990) Production of correctly processed human serum albumin in transgenic plants. Biotechnology 8:217–221

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Zhou X, Liu Q, Stymne S, Green A (2005) Metabolic engineering of new fatty acids in plants. Curr Opin Plant Biol 8:197–203

    Article  CAS  PubMed  Google Scholar 

  • Smidansky E, Clancy M, Meyer F, Lanning S, Blake N, Talbert L, Giroux M (2002) Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proc Natl Acad Sci USA 99:1724–1729

    Article  CAS  PubMed  Google Scholar 

  • Smidansky E, Martin J, Hannah L, Fischer A, Giroux M (2003) Seed yieldand plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase. Planta 216:656–664

    CAS  PubMed  Google Scholar 

  • Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54:257–288

    Article  CAS  PubMed  Google Scholar 

  • Stafford HA (1990) Flavonoid metabolism. CRC Press, Boca Raton FL

    Google Scholar 

  • Staub JM, Garcia B, Graves J, Hajdukiewicz PT, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll JA, Spatola L, Ward D, Ye G, Russell DA (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333–338

    Article  CAS  PubMed  Google Scholar 

  • Steele CL, Gijzen M, Qutob D, Dixon RA (1999) Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in Soybean. Arch Biochem Biophys 367:146–150

    Article  CAS  PubMed  Google Scholar 

  • Stephanopoulos G, Vallino JJ (1991) Network rigidity and metabolic engineering in metabolite overproduction. Science 252:1675–1681

    Article  CAS  PubMed  Google Scholar 

  • Sticklen M (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443

    Article  CAS  PubMed  Google Scholar 

  • Sticklen M, Dale B, Maqbool S (2006) Transgenic plants containing ligninase and cellulase which degrade lignin and cellulose to fermentable sugars. US Patent 7,049,485

    Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526–8530

    Article  CAS  PubMed  Google Scholar 

  • Sweetlove LJ, Last RL, Fernie AR (2003) Predictive metabolic engineering: a goal for systems biology. Plant Physiol 132:420–425

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y (2006) Flower color and cytochromes P450. Phytochem Rev 5:283–291

    Article  CAS  Google Scholar 

  • Tanaka Y, Brugliera F (2006) Flower color. In: Ainsworth C (ed) Flowering and its manipulation. Blackwell, Oxford, pp 201–239

    Google Scholar 

  • Tanaka Y, Tsuda S, Kusumi T (1998) Metabolic engineering to modify flower color. Plant Cell Physiol 39:1119–1126

    CAS  Google Scholar 

  • Taylor M, Mad Arif S, Kumar A (1992) Expression and sequence analysis of cDNAs induced during the early stages of tuberization in different organs of potato plant (Solanum tuberosum L.). Plant Mol Biol 20:641–651

    Article  CAS  PubMed  Google Scholar 

  • Thelen J, Ohlrogge J (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metabol Eng 4:12–21

    Article  CAS  Google Scholar 

  • Thu-Hang P, Bassie L, Safwat G, Trung-Nghia P, Christou P, Capell T (2002) Expression of a heterologous S-adenosylmethionine decarboxylase cDNA in plants demonstrates that changes in S-adenosyl-L-methionine decarboxylase activity determine levels of the higher polyamines spermidine and spermine. Plant Physiol 129:1744–1754

    Article  PubMed  CAS  Google Scholar 

  • Tian L, Dixon RA (2006) Engineering isoflavone metabolism with an artificial bifunctional enzyme. Planta 224:496–507

    Article  CAS  PubMed  Google Scholar 

  • Tregoning JS, Nixon P, Kuroda H, Svab Z, Clare S, Bowe F, Fairweather N, Ytterberg J, van Wijk KJ, Dougan G, Maliga P (2003) Expression of tetanus toxin Fragment C in tobacco chloroplasts. Nucl Acids Res 31:1174–1179

    Article  CAS  PubMed  Google Scholar 

  • Trung-Nghia P, Bassie L, Safwat G, Thu-Hang P, Lepri O, Rocha P, Christou P, Capell T (2003) Reduction in the endogenous arginine decarboxylase transcript levels in rice leads to depletion of the putrescine and spermidine pools with no concomitant changes in the expression of downstream genes in the polyamine biosynthetic pathway. Planta 218:125–134

    Article  PubMed  CAS  Google Scholar 

  • Ueyama Y, Suzuki K, Fukuchi-Mizutani M, Fukui Y, Miyazaki K, Ohkawa H, Kusumi T, Tanaka Y (2002) Molecular and biochemical characterization of torenia flavonoid 3′-hydroxylase and flavone synthase II and modification of flower color by modulating the expression of these genes. Plant Sci 163:253–263

    Article  CAS  Google Scholar 

  • Van Eenennaam A, Lincoln K, Durrett T, Valentin H, Shewmaker C, Thome G, Jiang J, Baszis S, Levering C, Aasen E (2003) Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant cell 15:3007–3019

    Article  PubMed  CAS  Google Scholar 

  • Verweij W, Spelt C, Di Sansebastiano G-P, Vermeer J, Reale L, Ferranti F, Koes R, Quattrocchio F (2008) An H+ P-ATPase on the tonoplast determines vacuolar pH and flower color. Nat Cell Biol 10:1456–1462

    Article  CAS  PubMed  Google Scholar 

  • Villarejo A, Buren S, Larsson S, Dejardin A, Monne M, Rudhe C, Karlsson J, Jansson S, Lerouge P, Rolland N, von Heijne G, Grebe M, Bako L, Samuelsson G (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol 7:1224–1231

    Article  PubMed  CAS  Google Scholar 

  • Vincken Q, Suurs L, Visser R (2003) Microbial starch-binding domains as a tool for targeting proteins to granules during starch biosynthesis. Plant Mol Biol 51:789–801

    Article  PubMed  Google Scholar 

  • Watson M, Malmberg R (1996) Regulation of Arabidopsis thaliana (L.) arginine decarboxylase by potassium deficiency stress. Plant Physiol 111:1077–1083

    Article  CAS  PubMed  Google Scholar 

  • Whitney SM, Andrews TJ (2003) Photosynthesis and growth of tobacco with a substituted bacterial Rubisco mirror the properties of the introduced enzyme. Plant Physiol 133:287–294

    Article  CAS  PubMed  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  CAS  PubMed  Google Scholar 

  • Witcher D, Hood E, Petersen D (1998) Commercial production of b-glucuronidase (GUS): a model system for the production of proteins in plants. Mol Breed 4:301–312

    Article  CAS  Google Scholar 

  • Wurbs D, Ruf S, Bock R (2007) Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 49:276–288

    Article  CAS  PubMed  Google Scholar 

  • Yabuya T, Nakamura M, Iwashina T, Yamaguchi M, Takehara T (1997) Anthocyanin-flavone copigmentation in bluish purple flowers of Japanese garden iris (Iris ensata Thunb.). Euphytica 98:163–167

    Article  CAS  Google Scholar 

  • Yadav N, Wierzbicki A, Aegerter M (1993) Cloning of higher plant ω-3 fatty acid desaturases. Plant Physiol 103:467–476

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    Article  CAS  PubMed  Google Scholar 

  • Ye GN, Hajdukiewicz PT, Broyles D, Rodriguez D, Xu CW, Nehra N, Staub JM (2001) Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J 25:261–270

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Kondo T, Okazaki Y, Katou K (1995) Cause of blue petal color. Nature 373:291

    Article  CAS  Google Scholar 

  • Yoshida K, Toyama-Kato Y, Kameda K, Kondo T (2003) Sepal color variation of Hydrangea macrophylla and vacuolar pH measured with a proton-selective microelectrode. Plant Cell Physiol 44:262–268

    Article  CAS  PubMed  Google Scholar 

  • Yu O, Jung W, Shi J, Croes RA, Fader GM, McGonigle B, Odell JT (2000) Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol 124:781–793

    Article  CAS  PubMed  Google Scholar 

  • Yu O, Shi J, Hession AO, Maxwell CA, McGonigle B, Odell JT (2003) Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63:753–763

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Morrison W, Freshour G, Hahn M, Ye Z (2003) Expression of a mutant formof cellulose synthase AtCesA7 causes dominant negative effect on cellulose biosynthesis. Plant Physiol 129:797–807

    Google Scholar 

  • Zhu X, Galili G (2003) Increased lysine synthesis coupled with a knockout of its catabolism synergistically boosts lysine content and also transregulates the metabolism of other amino acids in Arabidopsis seeds. Plant cell 15:845–853

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy C. Hall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Juříček, M., Emani, C., Kertbundit, S., Hall, T.C. (2010). Metabolic Engineering of Pathways and Gene Discovery. In: Kole, C., Michler, C.H., Abbott, A.G., Hall, T.C. (eds) Transgenic Crop Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04809-8_10

Download citation

Publish with us

Policies and ethics