Data Bases, the Base for Data Mining

  • Christian Buchsbaum
  • Sabine Hãhler-Schlimm
  • Silke Rehme
Part of the Structure and Bonding book series (STRUCTURE, volume 134)


Data collections provide a basis for solving numerous problems by data mining approach. The advantages of data mining consists in the retrieving of a new knowledge from existing information. The comprehensiveness of the data collection, the structure and quality of the data, and the selection of relevant data sets are extremely important to get correct results. In the crystallographic field, scientists will find several databases dealing with crystal structures of inorganic and organic compounds, or proteins. Usually databases have detailed data evaluation mechanisms integrated in their database production process and offer comprehensive and reliable data sets. The CIF standard enables the scientists to exchange the data. As an example, the Inorganic Crystal Structure Database (ICSD), a source of information for crystallographers, mineralogists, physicists, and chemists will be presented here. The ICSD contains about 120,000 entries (March 2009) of fully determined crystal structures. This chapter gives a detailed description of data collection, the contents of the data fields, data evaluation, and finally search the functionality of the ICSD database.


Crystallographic databases ICSD Data collection Data evaluation Database functionality Database design Search strategies 


  1. 1.
    ICSD is available at FIZ Karlsruhe at or (2009)
  2. 2.
    Allmann R, Hinek R (2007) The introduction of structure types into the inorganic crystal structure database icsd. Acta Crystallogr Sect A 63:412–417CrossRefGoogle Scholar
  3. 3.
    Behrens H (1996) Data import and validation in the inorganic crystal structure database. J Res Natl Inst Stand Technol 101:365–373CrossRefGoogle Scholar
  4. 4.
    Behrens H, Luksch P (2006) A bibliometric study in crystallography. Acta Crystallogr Sect B 62:993–1001CrossRefGoogle Scholar
  5. 5.
    Belsky A, Hellenbrandt M, Karen VL, Luksch P (2002) New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallogr Sect B 58:364–369CrossRefGoogle Scholar
  6. 6.
    Bergerhoff G, Brown ID (1987) Crystallographic databases. International Union of Crystallograhy, Chester, pp 77–95Google Scholar
  7. 7.
    Bragg WH, Bragg WL (1913) The reflection of X-rays by crystals. Proc Roy Soc London Ser A, Containing Papers of a Mathematical and Physical Character 88:428–438CrossRefGoogle Scholar
  8. 8.
    Bragg WL (1913) The structure of some crystals as indicated by their diffraction of X-rays. Proc Roy Soc London Ser A, Containing Papers of a Mathematical and Physical Character 89:248–277CrossRefGoogle Scholar
  9. 9.
    Cava RJ, Hewat AW, Hewat EA, Batlogg B, Mareziod M, Rabe KM, Krajewskia JJ, Peck Jr WF, Rupp Jr LW (1990) Structural anomalies, oxygen ordering and superconductivity in oxygen deficient BA2YCU3Ox. Physica C 165:419–433CrossRefGoogle Scholar
  10. 10.
    de Faria JL, Hellner E, Liebau F, Makovicky E, Parthé E (1990) Nomenclature of inorganic structure types. Report of the International Union of Crystallography Commission on Crystallographic Nomenclature Subcommittee on the Nomenclature of Inorganic Structure Types. Acta Crystallogr Sect A 46:1–11Google Scholar
  11. 11.
    Grice JD, Gault RA (2006) Johnsenite-(CE): A new member of the eudialyte group from Mont Saint-Hilaire, Quebec, Canada. Can Mineral 44:105–115CrossRefGoogle Scholar
  12. 12.
    Hall S, McMahon B (eds) (2005) Definition and exchange of crystallographic data. International Tables for Crystallography, vol G. Springer, DordrechtGoogle Scholar
  13. 13.
    Kabekkodu SN, Faber J, Fawcett T (2002) New Powder Diffraction File (PDF-4) in relational database format: advantages and data-mining capabilities. Acta Crystallogr Sect B 58: 333–337CrossRefGoogle Scholar
  14. 14.
    Kaduk JA (2002) Use of the inorganic structure database as a problem solving tool. Acta Crystallogr Sect B 58:370–379CrossRefGoogle Scholar
  15. 15.
    Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury csd 2.0 – new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470CrossRefGoogle Scholar
  16. 16.
    McMahon B, Hanson RM (2008) A toolkit for publishing enhanced figures. J Appl Crystallogr 41:811–814CrossRefGoogle Scholar
  17. 17.
    Pennington WT (1999) Diamond – visual crystal structure information system. J Appl Crystallogr 32:1028–1029CrossRefGoogle Scholar
  18. 18.
    Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr 22:151–152CrossRefGoogle Scholar
  19. 19.
    Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRefGoogle Scholar
  20. 20.
    Villars P, Cenzual K (eds) (2004) Structure types. Part 1: space groups (230) \(Ia\bar{3}d\) – (219) \(F\bar{4}3c\), Landolt–Börnstein – Group III Condensed Matter, vol. 43A1. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christian Buchsbaum
    • 1
  • Sabine Hãhler-Schlimm
    • 1
  • Silke Rehme
    • 1
  1. 1.Fachinformationszentrum KarlsruheEggenstein-LeopoldshafenGermany

Personalised recommendations