Virtual Cultural Tour Personalization by Means of an Adaptive E-Learning System: A Case Study

  • Carla Limongelli
  • Filippo Sciarrone
  • Marco Temperini
  • Giulia Vaste
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5736)


Visiting a real or virtual museum or an archaeological site can be a hard task, especially in case of large sites provided with many works of art or ancient ruins. For this reason most historical sites provide guided tours, to improve visitors satisfaction and interest. In this work we explore the use of an e-learning environment, called Lecomps5, to provide museums or other cultural sites with the capability of automatically planning personalized tours, according to visitors needs and interests. Lecomps5 allows a domain expert, through a suitable GUI, to build a pool of learning components concerning a given site. Then the system, by means of an embedded planner, generates a personalized tour through the works of art, on the basis of the visitor’s artistic interests and needs. We propose a first application of this system to an ancient archaeological site called Lucus Feroniae, showing how an e-learning platform can be successfully used for guiding visitors as well.


Learn Object Domain Expert Archaeological Site Learning Style Linear Temporal Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bordoni, L., Pasqualini, L., Sciarrone, F.: Chem: A system for the automatic analysis of e-mails in the restoration and conservation domain. In: LREC 2004: Language and Resource Evaluation Conference, Lisboa (2004)Google Scholar
  2. 2.
    Colagrossi, A., Sciarrone, F., Seccaroni, C.: A methodology for automating the classification of works of art using neural networks. Leonardo, Journal of the International Society for the Arts Sciences and Technology 36(1), 69 (2003)Google Scholar
  3. 3.
    Gentili, G., Micarelli, A., Sciarrone, F.: Infoweb: An adaptive information filtering system for the cultural heritage domain. Applied Artificial Intelligence 17(8-9), 715–744 (2003)CrossRefGoogle Scholar
  4. 4.
    Stock, O., Zancanaro, M., Busetta, P., Callaway, C.B., Krüger, A., Kruppa, M., Kuflik, T., Not, E., Rocchi, C.: Adaptive, intelligent presentation of information for the museum visitor in PEACH. User Model. User-Adapt. Interact 17(3), 257–304 (2007)CrossRefGoogle Scholar
  5. 5.
    Goren-Bar, D., Graziola, I., Pianesi, F., Zancanaro, M.: The influence of personality factors on visitor attitudes towards adaptivity dimensions for mobile museum guides. User Model. User-Adapt. Interact 16(1), 31–62 (2006)CrossRefGoogle Scholar
  6. 6.
    Wang, Y., Aroyo, L., Stash, N., Rutledge, L.: Interactive user modeling for personalized access to museum collections: The rijksmuseum case study. In: Conati, C., McCoy, K.F., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 385–389. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Felder, R.M., Silverman, L.K.: Learning and teaching styles in engineering education. Engineering Education 78(7), 674 (1988)Google Scholar
  8. 8.
    Limongelli, C., Sterbini, A., Temperini, M.: Automated course configuration based on automated planning: framework and first experiments. In: Chiazzese, G., et al. (eds.) Methods and Technologies for Learning, Proc. ICMTL 2005, WIT Press (2005)Google Scholar
  9. 9.
    Limongelli, C., Sciarrone, F., Vaste, G., Temperini, M.: Lecomps5: A web-based learning system for course personalization and adaptation. In: IADIS International Conference e-Learning 2008, Amsterdam, The Netherlands (2008)Google Scholar
  10. 10.
    Limongelli, C., Sciarrone, F., Temperini, M., Vaste, G.: Lecomps5: a framework for the automatic building of personalized learning sequences. In: Lytras, M.D., Carroll, J.M., Damiani, E., Tennyson, R.D. (eds.) WSKS 2008. LNCS (LNAI), vol. 5288, pp. 296–303. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Mayer, M.C., Limongelli, C., Orlandini, A., Poggioni, V.: Linear temporal logic as an executable semantics for planning languages. J. of Logic, Lang. and Inf. 1(16), 63–89 (2007)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Wolper, P.: The tableau method for temporal logic: an overview. Journal of Logique et Analyse 28, 119–152 (1985)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Sammour, G., Schreurs, J., Al-Zoubi, A., Vanhoof, K.: The role of knowledge management and e-learning in professional development. Int. Journal of Knowledge and Learning 4(5), 465–477 (2008)CrossRefGoogle Scholar
  14. 14.
    Wu, Y.-C.J., Cheng, M.J.: Accessible tourism for the disabled: Long tail theory. In: Lytras, M.D., Carroll, J.M., Damiani, E., Tennyson, R.D. (eds.) WSKS 2008. LNCS (LNAI), vol. 5288, pp. 296–303. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Carla Limongelli
    • 1
  • Filippo Sciarrone
    • 2
  • Marco Temperini
    • 3
  • Giulia Vaste
    • 1
  1. 1.Dept. Computer Science and AutomationRoma Tre Un.RomeItaly
  2. 2.Open Informatica s.r.l. - E-learning DivisionPomeziaItaly
  3. 3.Dept. Computer and Systems Science, Sapienza Un.RomeItaly

Personalised recommendations