Skip to main content

Dyes with Segmental Mobility: Molecular Rotors

  • Chapter
  • First Online:
Advanced Fluorescence Reporters in Chemistry and Biology I

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tomin V (2010) Physical principles behind spectroscopic response of organic fluorophores to intermolecular interactions. In: Demchenko AP (ed) Advanced Fluorescence Reporters in Chemistry and Biology I. Springer Ser Fluoresc 8:189–223

    Google Scholar 

  2. Rotkiewicz K, Grellmann KH, Grabowski ZR (1973) Reinterpretation of the anomalous fluorescence of p-N, N-dimethylaminobenzonitrile. Chem Phys Lett 19:315–318

    CAS  Google Scholar 

  3. Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem Rev 103(10):3899–4032

    Google Scholar 

  4. Rettig W, Lapouyade R (1994) Fluorescence probes based on twisted intramolecular charge transfer (TICT) states and other adiabatic photoreactions. Topics in fluorescence spectroscopy 4:109–149

    CAS  Google Scholar 

  5. Lapouyade R, Czeschka K, Majenz W, Rettig W, Gilabert E, Rulliere C (1992) Photophysics of donor–acceptor substituted stilbenes. A time-resolved fluorescence study using selectively bridged dimethylamino cyano model compounds. J Phys Chem 96(24):9643–9650

    CAS  Google Scholar 

  6. Zachariasse KA, Grobys M, von der Haar T, Hebecker A, Il’ichev YV, Jiang YB, Morawski O, Knhnle W (1996) Intramolecular charge transfer in the excited state. Kinetics and configurational changes. J Photochem Photobiol Chem 102(1S1):59–70

    CAS  Google Scholar 

  7. Grabowski ZG, Dobkowski J (1983) Twisted intramolecular charge transfer (TICT) excited states: energy and molecular structure. Pure Appl Chem 55(2):245–252

    CAS  Google Scholar 

  8. Gregoire G, Dimicoli I, Mons M, Donder-Lardeux C, Jouvet C, Martrenchard S, Solgadi D (1998) Femtosecond dynamics of “TICT” state formation in small clusters: the dimethylaminobenzomethyl ester acetonitrile system. J Phys Chem A 102(41):7896–7902

    CAS  Google Scholar 

  9. Rulliere C, Grabowski ZG, Dobkowski J (1987) Picosecond absorption spectra of carbonyl derivatives of dimethylaniline: the nature of the TICT excited states. Chem Phys Lett 137(5):408–413

    CAS  Google Scholar 

  10. Bulgarevich DS, Kajimoto O, Hara K (1995) High-pressure studies of the viscosity effects on the formation of the twisted intramolecular charge-transfer (TICT) state in 4,4′-diaminodiphenyl sulfone (DAPS). J Phys Chem 99(36):13356–13361

    CAS  Google Scholar 

  11. Il'ichev YV, Kuhnle W, Zachariasse KA (1998) Intramolecular charge transfer in dual fluorescent 4-(dialkylamino) benzonitriles. Reaction efficiency enhancement by increasing the size of the amino and benzonitrile subunits by alkyl substituents. J Phys Chem A 102(28):5670–5680

    Google Scholar 

  12. Schuddeboom W, Jonker SA, Warman JM, Leinhos U, Kühnle W, Zachariasse KA (1992) Excited-state dipole moments of dual fluorescent 4-(dialkylamino) benzonitriles. Influence of alkyl chain length and effective solvent polarity. J Phys Chem 96:10809–10819

    CAS  Google Scholar 

  13. Stsiapura VI, Maskevich AA, Kuzmitsky VA, Turoverov KK, Kuznetsova IM (2007) Computational study of thioflavin T torsional relaxation in the excited state. J Phys Chem A 111(22):4829–4835

    CAS  Google Scholar 

  14. Allen BD, Benniston AC, Harriman A, Rostron SA, Yu C (2005) The photophysical properties of a julolidene-based molecular rotor. Phys Chem Chem Phys 7(16):3035–3040

    CAS  Google Scholar 

  15. Rettig W, Strehmel B, Majenz W (1993) The excited states of stilbene and stilbenoid donor–acceptor dye systems. A theoretical study. Chem Phys 173(3):525–537

    CAS  Google Scholar 

  16. Strehmel B, Seifert H, Rettig W (1997) Photophysical properties of fluorescence probes. 2. A model of multiple fluorescence for stilbazolium dyes studied by global analysis and quantum chemical calculations. J Phys Chem B 101(12):2232–2243

    CAS  Google Scholar 

  17. Rettig W, Klock A (1985) Intramolecular fluorescence quenching in aminocoumarines. Identification of an excited state with full charge separation. Can J Chem 63(7):1649–1653

    CAS  Google Scholar 

  18. Kung CE, Reed JK (1986) Microviscosity measurements of phospholipid bilayers using fluorescent dyes that undergo torsional relaxation. Biochemistry 25:6114–6121

    CAS  Google Scholar 

  19. Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA (2005) Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes. Bioorg Chem 33(6):415–425

    CAS  Google Scholar 

  20. Diverdi LA, Topp MR (1984) Subnanosecond time-resolved fluorescence of acridine in solution. J Phys Chem 88(16):3447–3451

    CAS  Google Scholar 

  21. Guilbault GG (1990) Practical fluorescence. CRC, Boca Raton, FL

    Google Scholar 

  22. El-Sayed MA, Kasha M (1959) Interchange of orbital excitation types of the lowest electronic states of 2 ring N-heterocyclics by solvation. Spectrochim Acta 15:758–759

    Google Scholar 

  23. Haidekker MA, Akers W, Lichlyter D, Brady TP, Theodorakis EA (2005) Sensing of flow and shear stress using fluorescent molecular rotors. Sensor Lett 3:42–48

    CAS  Google Scholar 

  24. Kuimova MK, Botchway SW, Parker AW, Balaz M, Collins HA, Anderson HL, Suhling K, Ogilby PR (2009) Imaging intracellular viscosity of a single cell during photoinduced cell death. Nat Chem 1(1):69–73

    CAS  Google Scholar 

  25. Law KY (1980) Fluorescence probe for microenvironments: Anomalous viscosity dependence of the fluorescence quantum yield of p-N, N-dialkylaminobenzylidenmalononitrile in 1-alkanols. Chem Phys Lett 75(3):545–549

    CAS  Google Scholar 

  26. Lukac S (1984) Thermally induced variations in polarity and microviscosity of phospholipid and surfactant vesicles monitored with a probe forming an intramolecular charge-transfer complex. J Am Chem Soc 106:4386–4392

    Google Scholar 

  27. Viriot ML, Carré MC, Geoffroy-Chapotot C, Brembilla A, Muller S, Stoltz J-F (1998) Molecular rotors as fluorescent probes for biological studies. Clin Hemorheol Microcirc 19:151–160

    CAS  Google Scholar 

  28. Förster Th, Hoffmann G (1971) Die Viskositätsabhängigkeit der Fluoreszenzquantenausbeuten einiger Farbstoffsysteme [effect of viscosity on the fluorescence quantum yield of some dye systems]. Z Phys Chem 75:6376

    Google Scholar 

  29. Loutfy RO, Arnold BA (1982) Effect of viscosity and temperature on torsional relaxation of molecular rotors. J Phys Chem 86:4205–4211

    CAS  Google Scholar 

  30. Loutfy RO (1986) Fluorescence probes for polymer free-volume. Pure Appl Chem 58(9):1239–1248

    CAS  Google Scholar 

  31. von Gierer A, Wirtz K (1953) Molekulare Theorie der Mikroreibung [Molecular theory of microfriction]. Z Naturforschung 8a:523–538

    Google Scholar 

  32. Doolittle AK (1952) Studies in Newtonian flow III. The dependence of the viscosity of liquids on molecule weight and free space (in homologous series). J Appl Phys 23(2):236–239

    CAS  Google Scholar 

  33. Loutfy RO, Law KY (1980) Electrochemistry and spectroscopy of intramolecular charge-transfer complexes. p-N, N-dialkylaminobenzylidenemanononitriles. J Phys Chem 84:2803–2808

    CAS  Google Scholar 

  34. Parusel ABJ (2001) Excited state intramolecular charge transfer in N, N-heterocyclic-4-aminobenzonitriles: a DFT study. Chem Phys Lett 340(5–6):531–537

    CAS  Google Scholar 

  35. Parusel ABJ, Köhler G (2001) Influence of the alkyl chain length on the excited-state properties of 4-dialkyl-benzonitriles. A theoretical DFT/MRCI study. Int J Quantum Chem 84(2):149–156

    CAS  Google Scholar 

  36. Quiñones E, Ishikawa Y, Leszczynski J (2000) Conformational properties of dimethylaminobenzonitrile in gas phase and polar solvents: ab initio HF/6-31G (d, p) and MP2/6-31G (d, p) investigations. J Mol Struct: THEOCHEM 529(1–3):127–134

    Google Scholar 

  37. Zerner MC, Reidlinger C, Fabian WMF, Junek H (2001) Push–dyes containing malononitrile dimer as acceptor: synthesis, spectroscopy and quantum chemical calculations. J Mol Struct: THEOCHEM 543(1–3):129–146

    CAS  Google Scholar 

  38. Cao X, Tolbert RW, McHale JL, Edwards WD (1998) Theoretical study of solvent effects on the intramolecular charge transfer of a hemicyanine dye. J Phys Chem A 102(17):2739–2748

    CAS  Google Scholar 

  39. Sudholt W, Staib A, Sobolewski AL, Domcke W (2000) Molecular-dynamics simulations of solvent effects in the intramolecular charge transfer of 4-(N, N-dimethylamino) benzonitrile. Phys Chem Chem Phys 2(19):4341–4353

    CAS  Google Scholar 

  40. Kottas GS, Clarke LI, Horinek D, Michl J (2005) Artificial molecular rotors. Chem Rev 105(4):1281–1376

    CAS  Google Scholar 

  41. Kee HL, Kirmaier C, Yu L, Thamyongkit P, Youngblood WJ, Calder ME, Ramos L, Noll BC, Bocian DF, Scheidt WR (2005) Structural control of the photodynamics of boron–dipyrrin complexes. J Phys Chem B 109(43):20433

    CAS  Google Scholar 

  42. Kollmannsberger M, Rurack K, Resch-Genger U, Daub J (1998) Ultrafast charge transfer in amino-substituted boron dipyrromethene dyes and its inhibition by cation complexation: a new design concept for highly sensitive fluorescent probes. J Phys Chem A 102:10211–10220

    CAS  Google Scholar 

  43. Rettig W (1980) External and internal parameters affecting the dual fluorescence of p-cyano-dialkylanilines. J Lumin 26:21–46

    Google Scholar 

  44. Zachariasse KA, von der Haar T, Hebecker A, Leinhos U, Kuhnle W (1993) Intramolecular charge transfer in aminobenzonitriles: requirements for dual fluorescence. Pure Appl Chem 65(8):1745–1750

    CAS  Google Scholar 

  45. Rotkiewicz K, Rettig W, Detzerd N, Rothe A (2003) Substituent-induced coupling of the two lowest excited singlet states of 2-methoxy-derivatives of 4-(N, N-dimethylamino)- and 4-(N-methylamino)benzonitrile. Phys Chem Chem Phys 5:998–1002

    CAS  Google Scholar 

  46. Shinohara Y, Arai T (2008) Effect of methoxy substituents on the excited state properties of stilbene. Bull Chem Soc Jpn 81(11):1500–1504

    CAS  Google Scholar 

  47. Lippert E, Ayuk AA, Rettig W, Wermuth G (1981) Adiabatic photoreactions in dilute solutions of p-substituted N, N′-dialkylanilines and related donor–acceptor compounds. J Photochem 17:237–241

    CAS  Google Scholar 

  48. Even P, Chaubet F, Letourneur D, Viriot ML, Carre MC (2003) Coumarin-like fluorescent molecular rotors for bioactive polymers probing. Biorheology 40(1):261–263

    CAS  Google Scholar 

  49. Yang X, Jiang X, Zhao C, Chen R, Qin P, Sun L (2006) Donor–acceptor molecules containing thiophene chromophore: synthesis, spectroscopic study and electrogenerated chemiluminescence. Tetrahedron Lett 47:4961–4964

    Google Scholar 

  50. Cowley DJ, Peoples AH (1977) Rotational isomerism and dual luminescence in dipolar dialkylamino-compounds. J Chem Soc Chem Commun:352–353

    Google Scholar 

  51. Zhen Z, Tug C-H (1991) Hydrophobic effects on photophysical and photochemical processes: excimer fluorescence and aggregate formation of long-chain alkyl 4-(N, N-dimethylamino ) benzoate in water–organic binary mixtures. Chem Phys Lett 180(3):211–215

    CAS  Google Scholar 

  52. Braun D, Rettig W, Delmond S, Letard J-F, Lapouyade R (1997) Amide derivatives of DMABN: a new class of dual fluorescent compounds. J Phys Chem A 101:6836–6841

    CAS  Google Scholar 

  53. Kumar S, Singh AK, Krishnamoorthy G, Swaminathan R (2008) Thioflavin T displays enhanced fluorescence selectively inside anionic micelles and mammalian cells. J Fluoresc 18(6):1199–1205

    CAS  Google Scholar 

  54. Khurana R, Coleman C, Ionescu-Zanetti C, Carter SA, Krishna V, Grover RK, Roy R, Singh S (2005) Mechanism of thioflavin T binding to amyloid fibrils. J Struct Biol 151(3):229–238

    CAS  Google Scholar 

  55. Naik LR, Naik AB, Pal H (2009) Steady-state and time-resolved emission studies of thioflavin-T. J Photochem Photobiol A Chem 204:161–167

    CAS  Google Scholar 

  56. Retna Raj C, Ramaraj R (1997) Cyclodextrin induced intermolecular excimer formation of thioflavin T. Chem Phys Lett 273(3–4):285–290

    CAS  Google Scholar 

  57. Stsiapura VI, Maskevich AA, Kuzmitsky VA, Uversky VN, Kuznetsova IM, Turoverov KK (2008) Thioflavin T as a molecular rotor: fluorescent properties of thioflavin T in solvents with different viscosity. J Phys Chem B 112(49):15893–15902

    CAS  Google Scholar 

  58. Herbich J, Kapturkiewicz A (1991) Radiative and radiationless depopulation of the excited intramolecular charge transfer states: aryl derivatives of aromatic amines. Chem Phys 158:143–153

    CAS  Google Scholar 

  59. Siemiarczuk A, Grabowski ZR, Krówczynski A, Asher M, Ottolenghi M (1977) Two emitting states of excited p-(9-Anthryl)-N, N-dimethylaniline derivatives in polar solvents. Chem Phys Lett 51:315–320

    CAS  Google Scholar 

  60. Siemiarczuk A, Ware WR (1987) Complex excited-state relaxation in p-(9-Anthryl)-N, N-dimethylaniline derivatives evidenced by fluorescence lifetime distributions. J Phys Chem 91:3677–3682

    CAS  Google Scholar 

  61. Herbich J, Dobkowski J, Rulliére C, Nowacki J (1989) Low-temperature dual fluorescence in 9-morpholinoacridine picosecond TICT state formation? J Lumin 44:87–95

    CAS  Google Scholar 

  62. Haidekker MA, Theodorakis EA (2007) Molecular rotors-fluorescent biosensors for viscosity and flow. Org Biomol Chem 5(11):1669–1678

    CAS  Google Scholar 

  63. Pillai ZS, Sudeep PK, George Thomas K (2003) Effect of viscosity on the singlet-excited state dynamics of some hemicyanine dyes. Res Chem Intermed 29(3):293–305

    CAS  Google Scholar 

  64. Bosch P, Peinado C, Martin V, Catalina F, Corrales T (2006) Fluorescence monitoring of photoinitiated polymerization reactions synthesis, photochemical study and behaviour as fluorescent probes of new derivatives of 4-dimethylaminostyryldiazines. J Photochem Photobiol A Chem 180(1–2):118–129

    CAS  Google Scholar 

  65. Lord SJ, Conley NR, Lee HD, Nishimura SY, Pomerantz AK, Willets KA, Lu Z, Wang H, Liu N, Samuel R, Weber R, Semyonov A, He M, Twieg RJ, Moerner WE (2009) DCDHF fluorophores for single-molecule imaging in cells. ChemPhysChem 10:55–65

    CAS  Google Scholar 

  66. Rettig W, Vogel M, Lippert E, Otto H (1986) The dynamics of adiabatic photoreactions as studied by means of the time structure of synchrotron radiation. Chem Phys 103:381–390

    Google Scholar 

  67. Vogel M, Rettig W (1985) Efficient intramolecular fluorescence quenching in triphenylmethane dyes involving excited states with charge separation and twisted conformations. Ber Bunsenges 89(9):962–968

    CAS  Google Scholar 

  68. Haidekker MA, L'Heureux N, Frangos JA (2000) Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence. Am J Physiol Heart Circ Physiol 278(4):H1401–H1406

    CAS  Google Scholar 

  69. Jiang Y (1994) pH Dependence of the twisted intramolecular charge transfer(TICT) of p-N, N-dimethylaminobenzoic acid in aqueous solution. J Photochem Photobiol A Chem 78(3):205–208

    CAS  Google Scholar 

  70. Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA (2006) A ratiometric fluorescent viscosity sensor. J Am Chem Soc 128:398–399

    Google Scholar 

  71. Milich KN, Akers W, Haidekker MA (2005) A ratiometric fluorophotometer for fluorescence-based viscosity measurement with molecular rotors. Sensor Lett 3:237–243

    CAS  Google Scholar 

  72. Suhling K, French PMW, Phillips D (2005) Time-resolved fluorescence microscopy. Photochem Photobiol Sci 4(1):13–22

    CAS  Google Scholar 

  73. Vogel M, Rettig W (1987) Excited state dynamics of triphenylmethane-dyes used for investigation of microviscosity effects. Ber Bunsenges Phys Chem 91:1241–1247

    CAS  Google Scholar 

  74. Moog RS, Ediger MD, Boxer SG, Fayer MD (1982) Viscosity dependence of the rotational reorientation of rhodamine B in mono- and polyalcohols. Picosecond transient grating experiments. J Phys Chem 86:4694–4700

    CAS  Google Scholar 

  75. Dutta P, Bhattacharyya K (2004) Ultrafast chemistry in complex and confined systems. J Chem Sci 116:5–16

    Google Scholar 

  76. Hara K, Bulgarevich DS, Kajimoto O (1996) Pressure tuning of solvent viscosity for the formation of twisted intramolecular charge-transfer state in 4, 4′-diaminophenyl sulfone in alcohol solution. J Chem Phys 104(23):9431–9436

    CAS  Google Scholar 

  77. Gierer VA, Wirtz K (1953) Molekulare Theorie der Mikroreibung. Z Naturforsch 8(Part A):532–538

    Google Scholar 

  78. Akers W, Haidekker MA (2005) Precision assessment of biofluid viscosity measurements using molecular rotors. J Biomech Eng 127(3):450–454

    Google Scholar 

  79. Akers W, Haidekker MA (2004) A molecular rotor as viscosity sensor in aqueous colloid solutions. J Biomech Eng 126(3):340–345

    CAS  Google Scholar 

  80. Akers WJ, Cupps JM, Haidekker MA (2005) Interaction of fluorescent molecular rotors with blood plasma proteins. Biorheology 42(5):335–344

    CAS  Google Scholar 

  81. Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 84:2803–2808

    Google Scholar 

  82. Kelley FN, Bueche F (1961) Viscosity and glass temperature relations for polymer-diluent systems. J Polym Sci 50(154):549–556

    CAS  Google Scholar 

  83. Bosch P, Catalina F, Corrales T, Peinado C (2005) Fluorescent probes for sensing processes in polymers. Chem Eur J 11(15):4314

    CAS  Google Scholar 

  84. Paczkowski J, Neckers DC (1991) Twisted intramolecular charge-transfer phenomenon as a quantitative probe of polymerization kinetics. Macromolecules 24(10):3013–3016

    CAS  Google Scholar 

  85. Benjelloun A, Brembilla A, Lochon P, Adibnejad M, Viriot ML, Carré MC (1996) Detection of hydrophobic microdomains in aqueous solutions of amphiphilic polymers using fluorescent molecular rotors. Polymer (Guildford) 37(5):879–883

    CAS  Google Scholar 

  86. Haidekker MA, Lichlyter D, Ben Johny M, Grimes CA (2006) Probing polymerization dynamics with fluorescent molecular rotors and magnetoelastic sensors. Sensor Lett 4:257–261

    CAS  Google Scholar 

  87. Zhu D, Haidekker MA, Lee J-S, Won Y-Y, Lee JC (2007) Application of molecular rotors to the determination of the molecular weight dependence of viscosity in polymer melts. Macromolecules 40:7730–7732

    CAS  Google Scholar 

  88. Haidekker MA, Ling T, Anglo M, Stevens HY, Frangos JA, Theodorakis EA (2001) New fluorescent probes for the measurement of cell membrane viscosity. Chem Biol 8(2):123–131

    CAS  Google Scholar 

  89. Haidekker MA, Brady TP, Chalian SH, Akers W, Lichlyter D, Theodorakis EA (2004) Hydrophilic molecular rotor derivatives-synthesis and characterization. Bioorg Chem 32(4):274–289

    CAS  Google Scholar 

  90. Sarkar N, Das K, Nath DN, Bhattacharyya K (1994) Twisted charge transfer processes of Nile red in homogeneous solutions and in faujasite zeolite. Langmuir 10(1):326–329

    CAS  Google Scholar 

  91. Hazra P, Chakrabarty D, Chakraborty A, Sarkar N (2004) Intramolecular charge transfer and solvation dynamics of Nile red in the nanocavity of cyclodextrins. Chem Phys Lett 388(1–3):150–157

    CAS  Google Scholar 

  92. Jee AY, Park S, Kwon H, Lee M (2009) Excited state dynamics of Nile red in polymers. Chem Phys Lett 477(1–3):112–115

    CAS  Google Scholar 

  93. Cser A, Nagy K, Biczók L (2002) Fluorescence lifetime of Nile red as a probe for the hydrogen bonding strength with its microenvironment. Chem Phys Lett 360(5–6):473–478

    CAS  Google Scholar 

  94. Wearsch PA, Voglino L, Nicchitta CV (1998) Structural transitions accompanying the activation of peptide binding to the endoplasmic reticulum Hsp90 chaperone GRP94. Biochemistry 37(16):5709–5719

    CAS  Google Scholar 

  95. Vassar PS, Culling CF (1959) Fluorescent stains, with special reference to amyloid and connective tissues. Arch Pathol 68:487

    CAS  Google Scholar 

  96. Voropai ES, Samtsov MP, Kaplevskii KN, Maskevich AA, Stepuro VI, Povarova OI, Kuznetsova IM, Turoverov KK, Fink AL, Uverskii VN (2003) Spectral properties of thioflavin T and its complexes with amyloid fibrils. J Appl Spectrosc 70(6):868–874

    CAS  Google Scholar 

  97. Wood SJ, Maleeff B, Hart T, Wetzel R (1996) Physical, morphological and functional differences between pH 5.8 and 7.4 aggregates of the Alzheimer's amyloid peptide A. J Mol Biol 256(5):870–877

    CAS  Google Scholar 

  98. Biancalana M, Makabe K, Koide A, Koide S (2009) Molecular mechanism of thioflavin-T binding to the surface of b-rich peptide self-assemblies. J Mol Biol 385(4):1052–1063

    CAS  Google Scholar 

  99. Wu C, Biancalana M, Koide S, Shea JE (2009) Binding modes of thioflavin-T to the single-layer beta-sheet of the peptide self-assembly mimics. J Mol Biol 394(4):627–633

    Google Scholar 

  100. Sen P, Fatima S, Ahmad B, Khan RH (2009) Interactions of thioflavin T with serum albumins: spectroscopic analyses. Spectrochim Acta Part A: Mol Biomol Spectrosc 74(1):94–99

    Google Scholar 

  101. Eisert R, Felau L, Brown LR (2006) Methods for enhancing the accuracy and reproducibility of Congo red and thioflavin T assays. Anal Biochem 353(1):144–146

    CAS  Google Scholar 

  102. Blanchard BJ, Chen A, Rozeboom LM, Stafford KA, Weigele P, Ingram VM (2004) Efficient reversal of Alzheimer's disease fibril formation and elimination of neurotoxicity by a small molecule. Proc Natl Acad Sci U S A 101(40):14326

    CAS  Google Scholar 

  103. Feng BY, Toyama BH, Wille H, Colby DW, Collins SR, May BCH, Prusiner SB, Weissman J, Shoichet BK (2008) Small-molecule aggregates inhibit amyloid polymerization. Nat Chem Biol 4(3):197

    CAS  Google Scholar 

  104. Wang H, Duennwald ML, Roberts BE, Rozeboom LM, Zhang YL, Steele AD, Krishnan R, Su LJ, Griffin D, Mukhopadhyay S (2008) Direct and selective elimination of specific prions and amyloids by 4, 5-dianilinophthalimide and analogs. Proc Natl Acad Sci 105(20):7159

    CAS  Google Scholar 

  105. Kroes-Nijboer A, Lubbersen YS, Venema P, van der Linden E (2009) Thioflavin T fluorescence assay for [beta]-lactoglobulin fibrils hindered by DAPH. J Struct Biol 165(3):140

    CAS  Google Scholar 

  106. Ban T, Hamada D, Hasegawa K, Naiki H, Goto Y (2003) Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J Biol Chem 278(19):16462–16465

    CAS  Google Scholar 

  107. De Ferrari GV, Mallender WD, Inestrosa NC, Rosenberry TL (2001) Thioflavin T is a fluorescent probe of the acetylcholinesterase peripheral site that reveals conformational interactions between the peripheral and acylation sites. J Biol Chem 276(26):23282

    Google Scholar 

  108. Morimoto K, Kawabata K, Kunii S, Hamano K, Saito T, Tonomura B (2009) Characterization of type I collagen fibril formation using thioflavin T fluorescent dye. J Biochem 145(5):677

    CAS  Google Scholar 

  109. Lindgren M, Sörgjerd K, Hammarström P (2005) Detection and characterization of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using fluorescence spectroscopy. Biophys J 88(6):4200–4212

    CAS  Google Scholar 

  110. Bosch LI, Mahon MF, James TD (2004) The B–N bond controls the balance between locally excited (LE) and twisted internal charge transfer (TICT) states observed for aniline based fluorescent saccharide sensors. Tetrahedron Lett 45(13):2859–2862

    CAS  Google Scholar 

  111. Arimori S, Bosch LI, Ward CJ, James TD (2001) Fluorescent internal charge transfer (ICT) saccharide sensor. Tetrahedron Lett 42(27):4553–4555

    CAS  Google Scholar 

  112. Tan W, Zhang D, Zhu D (2007) 4-N-Methyl-N-(2-dihydroxyboryl-benzyl) amino benzonitrile and its boronate analogue sensing saccharides and fluoride ion. Bioorg Med Chem Lett 17(9):2629–2633

    CAS  Google Scholar 

  113. Fülöp A, Arian D, Lysenko A, Mokhir A (2009) A simple method for monitoring protein–DNA interactions. Bioorg Med Chem Lett 19(11):3104–3107

    Google Scholar 

  114. Albers E, Muller BW (1995) Cyclodextrin derivatives in pharmaceutics. Crit Rev Ther Drug Carrier Syst 12(4):311–337

    CAS  Google Scholar 

  115. Al-Hassan KA, Khanfer MF (1998) Fluorescence probes for cyclodextrin interiors. J Fluoresc 8(2):139–152

    CAS  Google Scholar 

  116. Kim YH, Cho DW, Yoon M, Kim D (1996) Observation of hydrogen-bonding effects on twisted intramolecular charge transfer of p-(N, N-diethylamino) benzoic acid in aqueous cyclodextrin solutions. J Phys Chem 100(39):15670–15676

    CAS  Google Scholar 

  117. Panja S, Chakravorti S (2002) Photophysics of 4-(N, N-dimethylamino)cinnamaldehyde/alpha-cyclodextrin inclusion complex. Spectrochim Acta A Mol Biomol Spectrosc 58(1):113–122

    Google Scholar 

  118. Wang J, Nakamura A, Hamasaki K, Ikeda H, Ikeda T, Ueno A (1996) A fluorescent molecule-recognition sensor with a protein as an environmental factor. Chem Lett 4:303–304

    Google Scholar 

  119. Shinitzky M (1984) Membrane fluidity and cellular functions. In: Shinitzky M (ed) Physiology of membrane fluidity. CRC, Boca Raton, FL, pp 1–51

    Google Scholar 

  120. Nadiv O, Shinitzky M, Manu H, Hecht D, Roberts CT Jr, LeRoith D, Zick Y (1994) Elevated protein tyrosine phosphatase activity and increased membrane viscosity are associated with impaired activation of the insulin receptor kinase in old rats. Biochem J 298(Pt 2):443–450

    CAS  Google Scholar 

  121. Osterode W, Holler C, Ulberth F (1996) Nutritional antioxidants, red cell membrane fluidity and blood viscosity in type 1 (insulin dependent) diabetes mellitus. Diabet Med 13(12):1044–1050

    CAS  Google Scholar 

  122. Zubenko GS, Kopp U, Seto T, Firestone LL (1999) Platelet membrane fluidity individuals at risk for Alzheimer's disease: a comparison of results from fluorescence spectroscopy and electron spin resonance spectroscopy. Psychopharmacology (Berl) 145(2):175–180

    CAS  Google Scholar 

  123. Shiraishi K, Matsuzaki S, Ishida H, Nakazawa H (1993) Impaired erythrocyte deformability and membrane fluidity in alcoholic liver disease: participation in disturbed hepatic microcirculation. Alcohol Alcohol Suppl 1A:59–64

    CAS  Google Scholar 

  124. Maczek C, Bock G, Jurgens G, Schonitzer D, Dietrich H, Wick G (1998) Environmental influence on age-related changes of human lymphocyte membrane viscosity using severe combined immunodeficiency mice as an in vivo model. Exp Gerontol 33(5):485–498

    CAS  Google Scholar 

  125. Möller W, Takenaka S, Rust M, Stahlhofen W, Heyer J (1997) Probing mechanical properties of living cells by magnetopneumography. J Aerosol Med 10(3):171–186

    Google Scholar 

  126. Butler JP, Kelly SM (1998) A model for cytoplasmic rheology consistent with magnetic twisting cytometry. Biorheology 35(3):193–209

    CAS  Google Scholar 

  127. Valberg PA, Albertini DF (1985) Cytoplasmic motions, rheology, and structure probed by a novel magnetic particle method. J Cell Biol 101(1):130–140

    CAS  Google Scholar 

  128. Humphry-Baker R, Grätzel M, Steiger R (1980) Drastic fluorescence enhancement and photochemical stabilization of cyanine dyes through micellar systems. J Am Chem Soc 102(2):847–848

    CAS  Google Scholar 

  129. Haidekker M, Brady T, Wen K, Okada C, Stevens H, Snell J, Frangos J, Theodorakis E (2002) Phospholipid-bound molecular rotors: synthesis and characterization. Bioorg Med Chem 10(11):3627–3636

    CAS  Google Scholar 

  130. Nipper ME, Majd S, Mayer M, Lee JC, Theodorakis EA, Haidekker MA (2008) Characterization of changes in the viscosity of lipid membranes with the molecular rotor FCVJ. Biochim Biophys Acta 1778(4):1148–1153

    CAS  Google Scholar 

  131. Barbu VD (1991) Isoprenylation of proteins: what is its role? C R Seances Soc Biol Fil 185(5):278–289

    CAS  Google Scholar 

  132. Kohl NE, Conner MW, Gibbs JB, Graham SL, Hartman GD, Oliff A (1995) Development of inhibitors of protein farnesylation as potential chemotherapeutic agents. J Cell Biochem Suppl 22:145–150

    CAS  Google Scholar 

  133. Härtel S, Tykhonova S, Haas M, Diehl HA (2002) The susceptibility of non-UV fluorescent membrane dyes to dynamical properties of lipid membranes. J Fluoresc 12(3):465–479

    Google Scholar 

  134. Luby-Phelps K, Mujumdar S, Mujumdar RB, Ernst LA, Galbraith W, Waggoner AS (1993) A novel fluorescence ratiometric method confirms the low solvent viscosity of the cytoplasm. Biophys J 65(1):236–242

    CAS  Google Scholar 

  135. Kuimova MK, Yahioglu G, Levitt JA, Suhling K (2008) Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging. J Am Chem Soc 130(21):6672–6673

    CAS  Google Scholar 

  136. Lodish HF (2008) Molecular cell biology, 6th edn. W.H. Freeman, New York

    Google Scholar 

  137. Dustin P (1984) Structure and Chemistry of microtubules. In: Microtubules, Springer-Verlag, New York, 19–94

    Google Scholar 

  138. Iio T, Takahashi S, Sawada S (1993) Fluorescent molecular rotors binding to actin. J Biochem 113:196–199

    CAS  Google Scholar 

  139. Sawada S, Iio T, Hayashi Y, Takahashi S (1992) Fluorescent rotors and their applications to the study of G–F transformation of actin. Anal Biochem 204:110–117

    CAS  Google Scholar 

  140. Kung CE, Reed JK (1989) Fluorescent molecular rotors: a new class of probes for tubulin structure and assembly. Biochemistry 28:6678–6686

    CAS  Google Scholar 

  141. Grinvald A, Fine A, Farber IC, Hildesheim R (1983) Fluorescence monitoring of electrical responses from small neurons and their processes. Biophys J 42(2):195–198

    CAS  Google Scholar 

  142. Ephardt H, Fromherz P (1989) Fluorescence and photoisomerization of an amphiphilic aminostilbazolium dye as controlled by the sensitivity of radiationless deactivation to polarity and viscosity. J Phys Chem 93(22):7717–7725

    CAS  Google Scholar 

  143. Jones MA, Bohn PW (2001) Total internal reflection fluorescence and electrocapillary investigations of adsorption at the water–dichloroethane electrochemical interface. 2. Fluorescence-detected linear dichroism investigation of adsorption-driven reorientation of di-N-butylaminonaphthylethenylpyridiniumpropylsulfonate. J Phys Chem B 105(11):2197–2204

    CAS  Google Scholar 

  144. Sutharsan J, Lichlyter D, Wright NE, Dakanali M, Haidekker MA, Theodorakis EA (2010) Molecular rotors: synthesis and evaluation as viscosity sensors. Tetrahedron 66:2582–2588

    CAS  Google Scholar 

  145. Lichlyter D, Haidekker MA (2009) Immobilization techniques for molecular rotors – towards a solid-state viscosity sensor platform. Sens Actuators B Chem 139:648–656

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Haidekker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haidekker, M.A., Nipper, M., Mustafic, A., Lichlyter, D., Dakanali, M., Theodorakis, E.A. (2010). Dyes with Segmental Mobility: Molecular Rotors. In: Demchenko, A. (eds) Advanced Fluorescence Reporters in Chemistry and Biology I. Springer Series on Fluorescence, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04702-2_8

Download citation

Publish with us

Policies and ethics