Skip to main content

Organic Dyes with Excited-State Transformations (Electron, Charge, and Proton Transfers)

  • Chapter
  • First Online:
Advanced Fluorescence Reporters in Chemistry and Biology I

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 8))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuznetsov AM, Ulstrup J (1999) Electron transfer in chemistry and biology: an introduction to the theory. Wiley, New York

    Google Scholar 

  2. May V, Kühn O (2004) Charge and energy transfer dynamics in molecular systems. Wiley-VCH, Weinheim, New York

    Google Scholar 

  3. Wagenknecht HA (2008) Charge transfer in DNA: from mechanism to application. Wiley-VCH, Weinheim, New York

    Google Scholar 

  4. Kavarnos GJ, Turro NJ (1986) Photosensitization by reversible electron transfer: theories, experimental evidence, and examples. Chem Rev 86:401–449

    CAS  Google Scholar 

  5. Babara PF, Mayer TJ, Ratner MA (1996) Contemporary issues in electron transfer research. J Phys Chem 100:13148–13168

    Google Scholar 

  6. D’Alessandro DM, Keene FR (2006) Current trends and future challenges in the experimental, theoretical and computational analysis of intervalence charge transfer (IVCT) transitions. Chem Soc Rev 35:424–440

    Google Scholar 

  7. Maroncelli M, Macinnis J, Flaming FR (1989) Polar solvent dynamics and electron-transfer reactions. Science 4899:1674–1681

    Google Scholar 

  8. Heitele H (1993) Dynamic solvent effects on electron-transfer reactions. Angew Chem Int Ed Engl 32:359–377

    Google Scholar 

  9. Horng ML, Gardecki JA, Papazyan A et al (1995) Subpicosecond measurements of polar salvation dynamics: Coumarin 153 revisited. J Phys Chem 99:17311–17337

    CAS  Google Scholar 

  10. Paddon-Row MN (1994) Investigating long-range electron-transfer processes with rigid, covalently linked donor-(norbornylogous bridge)-acceptor systems. Acc Chem Res 27:18–25

    CAS  Google Scholar 

  11. Jortner J, Bixon M, Langenbacher T (1998) Charge transfer and transport in DNA. Proc Natl Acad Sci USA 95:12759–12765

    CAS  Google Scholar 

  12. Davis WB, Svec WA, Ratner MA et al (1998) Molecular-wire behavior in p-phenylenevinylene oligomers. Nature 396:60–63

    CAS  Google Scholar 

  13. Adams DM, Brus L, Chidsey CED et al (2003) Charge transfer on the nanoscale: current status. J Phys Chem B 107:6668–6697

    CAS  Google Scholar 

  14. Guldi DM, Aminur Rahman GM, Sgobba V et al (2006) Multifunctional molecular carbon materials-from fullerenes to carbon nanotubes. Chem Soc Rev 35:471–487

    CAS  Google Scholar 

  15. Wiberg J, Guo L, Pettersson K et al (2007) Charge recombination versus charge separation in donor-bridge-acceptor systems. J Am Chem Soc 129:155–163

    CAS  Google Scholar 

  16. Wan C, Fiebig T, Kelley SO et al (1999) Femtosecond dynamics of DNA-mediated electron transfer. Proc Natl Acad Sci USA 96:6014

    CAS  Google Scholar 

  17. Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744

    CAS  Google Scholar 

  18. Levanon H, Möbius K (1997) Advanced EPR spectroscopy on electron transfer processes in photosynthesis and biomimetic model systems. Annu Rev Biophys Biomol Struct 26:495–540

    CAS  Google Scholar 

  19. Hsu CP (2009) The electronic couplings in electron transfer and excitation energy transfer. Acc Chem Res 42:509–518

    CAS  Google Scholar 

  20. Rehm D, Weller A (1970) Kinetics of fluorescence quenching by electron and H-atom transfer. Isr J Chem 8:259

    CAS  Google Scholar 

  21. Marcus RA (1963) On the theory of oxidation–reduction reactions involving electron transfer. V. Comparison and properties of electrochemical and chemical rate constants. J Phys Chem 67:853–857

    CAS  Google Scholar 

  22. Marcus RA (1964) Chemical and electrochemical electron-transfer theory. Annl Rev Phys Chem 15:155–196

    CAS  Google Scholar 

  23. Marcus RA (1965) On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J Chem Phys 43:679

    CAS  Google Scholar 

  24. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322

    CAS  Google Scholar 

  25. McCreery RL (2004) Molecular electronic junctions. Chem Mater 16:4477–4496

    CAS  Google Scholar 

  26. Hayes RT, Wasielewski MR, Gosztola D (2000) Ultrafast photoswitched charge transmission through the bridge molecule in a donor-bridge-acceptor system. J Am Chem Soc 122:5563–5567

    CAS  Google Scholar 

  27. Fan C, Plaxco KW, Heeger AJ (2005) Biosensor based on binding-modulated donor–acceptor distances. Trends Biotechnol 23:186–192

    CAS  Google Scholar 

  28. Galoppini E (2004) Linkers for anchoring sensitizers to semiconductor nanoparticles. Coordin Chem Rev 248:1283–1297

    CAS  Google Scholar 

  29. Bella SD (2001) Second-order nonlinear optical properties of transition metal complexes. Chem Soc Rev 30:355–366

    Google Scholar 

  30. Chattoraj M, Chung DD, Paulson B et al (1994) Mediated electronic energy transfer: effect of a second acceptor state. J Phys Chem 98:3361–3368

    CAS  Google Scholar 

  31. Balzani V, Juris A, Venturi M (1996) Luminescent and redox-active polynuclear transition metal complexes. Chem Rev 96:759–833

    CAS  Google Scholar 

  32. Zimmerman HE, Goldman TD, Hirzel TK et al (1980) Rod-like organic molecules. energy-transfer studies using sinelo-photon counting. J Org Chem 45:3933–3951

    CAS  Google Scholar 

  33. Tung CH, Zhang LP, Li Y et al (1997) Intramolecular long-distance electron transfer and triplet energy transfer. Photophysical and photochemical studies on a norbornadiene-steroid-benzidine system. J Am Chem Soc 119:5348–5354

    CAS  Google Scholar 

  34. Warrener RN (2000) New adventures in the synthesis of hetero-bridged syn-facially fused nornornadines (“[n]polynorbornadienes”) and their topological diversity. Eur J Org Chem 2000:3363–3380

    Google Scholar 

  35. Warrener RN, Pitt IG, Butler DN (1983) The synthesis of new linear and angular systems useful as rigid rods and spacers in the design of molecules. J Chem Soc Chem Commun 1340–1341

    Google Scholar 

  36. Warrener RN, Abbenante G, Kennard CHL (1994) A tandem cycloaddition protocol for the controlled synthesis of [n]ladderanes: new rods and spacers. J Am Chem Soc 116:3645–3646

    CAS  Google Scholar 

  37. Chow TJ, Chiu NR, Chen HC et al (2003) Photoinduced electron transfer reaction tuned by donor-acceptor pairs via rigid linear spacer heptacyclo[6.6.0.02, 6.03, 13.04, 11.05, 9.010, 14]tetradecane. Tetrahedron 59:5719–5730

    CAS  Google Scholar 

  38. Oevering H, Paddon-Row MN, Heppener M et al (1987) Long-range photoinduced through-bond electron transfer and radiatice recombination n via nonconjugated bridges: distance and solvent dependence. J Am Chem Soc 109:3258–3269

    CAS  Google Scholar 

  39. Chen KY, Hsieh CC, Cheng YM et al (2006) Tuning excited state electron transfer from an adiabatic to nonadiabatic type in donor-bridge-acceptor systems and the associated energy-transfer process. J Phys Chem A 110:12136–12144

    CAS  Google Scholar 

  40. de Silva AP, Gunaratne HQN, Gunnlaugsson T et al (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Google Scholar 

  41. Xu H, Xu X, Dabestani R et al (2002) Supramolecular fluorescent probes for the detection of mixed alkali metal ions that mimic the function of integrated logic gates. J Chem Soc Perkin Trans 2:636

    Google Scholar 

  42. Koskela SJM, Fyles TM, James TD (2005) A ditopic fluorescent sensor for potassium fluoride. Chem Commun 7:945–947

    Google Scholar 

  43. Uchiyama S, McClean GD, Iwai K et al (2005) Membrane media create small nanospaces for molecular computation. J Am Chem Soc 127:8920–8921

    CAS  Google Scholar 

  44. Farruggia G, Iotti S, Prodi L et al (2005) 8-hydroxyquinoline derivatives as fluorescent sensors for magnesium in living cells. J Am chem soc 128:344–350

    Google Scholar 

  45. Kele P, Nagy K, Kotschy A (2006) The development of conformational-dynamics-based sensor. Angew Chem Int Ed 45:2565–2567

    CAS  Google Scholar 

  46. Arimori S, Bell ML, Oh CS et al (2001) Molecular fluorescence sensors for saccharides. Chem Commun 18:1836–1837

    Google Scholar 

  47. Bronson RT, Michaelis DJ, Lamb RD et al (2005) Efficient immobilization of a cadmium chromosensor in a thin film: feneration of a cadmium sensor prototype. Org Lett 7:1105–1108

    CAS  Google Scholar 

  48. Nath S, Maitra U (2006) A simple and general strategy for the design of fluorescent cation sensor beads. Org Lett 8:3239–3242

    CAS  Google Scholar 

  49. Citterio D, Sasaki S, Suzuki K (2001) A new type of cation responsive chromoionophore with spectral sensitivity in the near-infrared spectral range. Chem Lett 30:552–553

    Google Scholar 

  50. Coskun A, Yilmaz MD, Akkaya EU (2007) Bis(2-pyridyl)-substituted boratriazaindacene as an NIR-emitting chemosensor for Hg(II). Org Lett 9:607–609

    CAS  Google Scholar 

  51. Killoran J, McDonnell SO, Gallagher JF et al (2008) A substituted BF2-chelated tetraarylazadipyrromethene as an intrinsic dual chemosensor in the 650–850 nm spectral range. New J Chem 32:483–489

    CAS  Google Scholar 

  52. Kiyose K, Kojima H, Urano Y et al (2006) Development of a ratiometric fluorescent zinc ion probe in near-infrared region, based on tricarbo-cyanine chromophore. J Am Chem Soc 128:6548–6549

    CAS  Google Scholar 

  53. Zhu M, Yuan M, Liu X et al (2008) Visible near-infrared chemosensor for mercury ion. Org Lett 10:1481–1484

    CAS  Google Scholar 

  54. Peng X, Song F, Lu E et al (2005) Heptamethine cyanine dyes with a large Stokes shift and strong fluorescence: a paradigm for excited-state intramolecular charge transfer. J Am Chem Soc 128:6548–6549

    Google Scholar 

  55. Benesi HA, Hildebrand JH (1949) A Spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    CAS  Google Scholar 

  56. Fang JM, Selvi S, Liao JH et al (2004) Fluorescent and circular dichroic detection of monosaccharides by molecular sensors: bis[(pyrrolyl)ethynyl]naphthyridine and bis[(indoili)ethynyl]naphthyridine. J Am Chem Soc 126:3559–3566

    CAS  Google Scholar 

  57. Rurack K, Koval’chuck A, Bricks JL et al (2001) A Simple bifunctional fluoroionophore signaling different metal ions either independently or cooperatively. J Am Chem Soc 123:6205–6206

    CAS  Google Scholar 

  58. Huang JH, Wen WH, Sun YY et al (2005) Two-stage sensing property via a conjugated donor–acceptor–donor constitution: application to the visual detection of mercuric ion. J Org Chem 70:5827–5832

    CAS  Google Scholar 

  59. Lee SH, Kim SH, Kim SK et al (2005) Fluorescence ratiometry of monomer/excimer emissions in a space-through PET system. J Org Chem 70:9288–9295

    CAS  Google Scholar 

  60. Müller A, Ratajack H, Junge W et al (1992) Studies in physical and theoretical chemistry; electron and proton transfer in chemistry and biology, vol 78. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  61. Waluk J (2000) Conformational analysis of molecules in excited states. Wiley-VCH, New York

    Google Scholar 

  62. Elsaesser TH, Bakker HJ (2002) Ultrafast hydrogen bonding dynamics and proton transfer processes in the condensed phase. Springer, Heidelberg

    Google Scholar 

  63. Kasha M (1986) Proton-transfer spectroscopy: perturbation of the tautomerization potential. J Chem Soc Faraday Trans 2(82):2379–2392

    Google Scholar 

  64. Chou PT (2001) The host/guest type of excited-state proton transfer; a general review. J Chin Chem Soc 48:651–682

    CAS  Google Scholar 

  65. Tolbert LM, Solntsev KM (2002) Excited-state proton transfer: from constrained systems to “super” photoacids to superfast proton transfer. Acc Chem Res 35:19–27

    CAS  Google Scholar 

  66. Waluk J (2003) Hydrogen-bonding-induced phenomena in bifunctional heteroazaaromatics. Acc Chem Res 36:832–838

    CAS  Google Scholar 

  67. Dermota TE, Zhong Q, Castleman AW (2004) Ultrafast dynamics in cluster systems. Chem Rev 104:1861–1886

    CAS  Google Scholar 

  68. Rodríguez-Santiago L, Sodupe M, Oliva A et al (1999) Hydrogen atom or proton transfer in neutral and single positive ions of salicylic acid and related compounds. J Am Chem Soc 121:8882–8890

    Google Scholar 

  69. Lamola AA, Sharp LJ (1966) Environmental effects on the excited states of o-hydroxy aromatic carbonyl compounds. J Phys Chem 70:2634–2638

    CAS  Google Scholar 

  70. McMorrow D, Kasha M (1984) Intramolecular excited-state proton transfer in 3-hydroxyflavone. Hydrogen-bonding solvent perturbations. J Phys Chem 88:2235–2243

    CAS  Google Scholar 

  71. Chou PT, Chen YC, Yu WS et al (2001) Spectroscopy and dynamics of excited-state intramolecular proton-transfer reaction in 5-hydroxyflavone. Chem Phys Lett 340:89–97

    CAS  Google Scholar 

  72. Van Benthem MH, Gillispie GD (1984) Intramolecular hydrogen bonding. 4. Dual fluorescence and excited-state proton transfer in 1, 5-dlhydroxyanthraqulnone. J Phys Chem 88:2954–2960

    Google Scholar 

  73. Jang DJ, Kelley DF (1985) Time-resolved and steady-state fluorescence studies of the excited-state intramolecular proton transfer and relaxation of 2-hydroxy-4, 5-naphthotropone. J Phys Chem 89:209–211

    CAS  Google Scholar 

  74. Wang H, Zhang H, Abou-Zied OK et al (2003) Femtosecond fluorescence upconversion studies of excited-state proton-transfer dynamics in 2-(20-hydroxyphenyl)benzoxazole (HBO) in liquid solution and DNA. Chem Phys Lett 367:599–608

    CAS  Google Scholar 

  75. Frey W, Laermer F, EIsaesser T (1991) Femtosecond studies of excited-state proton and deuterium transfer in benzothiazole compounds. J Phys Chem 95:10391–10395

    CAS  Google Scholar 

  76. Klöpffer W (1977) Intramolecular proton transfer in electronically excited molecules. In: Pitts JN Jr, Hammond GS, Gollnick K (eds) Advances in photochemistry, vol 10. Wiley, New York

    Google Scholar 

  77. Barbara PF, Walsh PK, Brus LE (1989) Picosecond kinetic and vibrationally resolved spectroscopic studies of intramolecular excited-state hydrogen atom transfer. J Phys Chem 93:29–34

    CAS  Google Scholar 

  78. Arnaut LG, Formosinho SJ (1993) Excited-state proton transfer reactions I. Fundamentals and intermolecular reactions. J Photochem Photobiol A 75:1–20

    CAS  Google Scholar 

  79. Schwartz BJ, Peteanu LA, Harris CB (1992) Direct observation of fast proton transfer: femtosecond photophysics of 3-hydroxyflavone. J Phys Chem 96:3591–3598

    CAS  Google Scholar 

  80. Frey W, Elsaesser T (1992) Femtosecond intramolecular proton transfer of vibrationally hot molecules in the electronic ground state. Chem Phys Lett 189:565–570

    CAS  Google Scholar 

  81. Chou PT, Chen YC, Yu WS et al (2001) Excited-state intramolecular proton transfer in 10-hydroxybenzo[h]quinoline. J Phys Chem A 105:1731–1740

    CAS  Google Scholar 

  82. Douhal A, Lahmani F, Zewail AH (1996) Proton-transfer reaction dynamics. Chem Phys 207:477–498

    CAS  Google Scholar 

  83. Chudoba C, Riedle E, Pfeiffer M et al (1996) Vibrational coherence in ultrafast excited state proton transfer. Chem Phys Lett 263:622–628

    CAS  Google Scholar 

  84. Pfeiffer M, Lenz K, Lau A et al (1997) Analysis of the vibrational spectra of heterocyclic aromatic molecules showing internal proton and deuterium transfer. J Raman Spectrosc 28:61–72

    CAS  Google Scholar 

  85. Parsapour F, Kelley DF (1996) Torsional and proton transfer dynamics in substituted 3-hydroxyflavones. J Phys Chem 100:2791–2798

    CAS  Google Scholar 

  86. Sytnik A, Kasha M (1994) Excited-state intramolecular proton transfer as a fluorescence probe for protein binding-site static polarity. Proc Natl Acad Sci USA 91:8627–8630

    CAS  Google Scholar 

  87. Sakai K, Tsuzuki T, Itoh Y et al (2005) Using proton-transfer laser dyes for organic laser diodes. Appl Phys Lett 86:081103

    Google Scholar 

  88. Lim SJ, Seo J, Park SY (2006) Photochromic switching of excited-state intramolecular proton-transfer (ESIPT) fluorescence: a unique route to high-contrast memory switching and nondestructive readout. J Am Chem Soc 128:14542–14547

    CAS  Google Scholar 

  89. Catalán J, del Valle JC, Claramuntb RM (1996) Photophysics of the 2-(2′-hydroxyphenyl)perimidine: on the fluorescence of the enol form. J Lumin 68:165–170

    Google Scholar 

  90. Roshal AD, Grigorovich AV, Doroshenko AO et al (1998) Flavonols and crown-flavonols as metal cation chelators. The different nature of Ba2+ and Mg2+ complexes. J Phys Chem A 102:5907–5914

    CAS  Google Scholar 

  91. Kim S, Seo J, Jung HK et al (2005) White luminescence from polymer thin films containing excited-state intramolecular proton-transfer dyes. Adv Mater 17:2077–2082

    CAS  Google Scholar 

  92. Chou P, McMorrow D, Aartsma TJ et al (1984) The proton–transfer laser. Gain spectrum and amplification of spontaneous emission of 3-hydroxyflavone. J Phys Chem 88:4596–4599

    CAS  Google Scholar 

  93. Etter MC, Urbańczyk-Lipkowska Z, Baer S et al (1986) The crystal structures and hydrogen-bond properties of three 3-hydroxyflavone derivatives. J Mol Struct 144:155–167

    CAS  Google Scholar 

  94. Ameer-Beg S, Ormson SM, Brown RG et al (2001) Ultrafast measurements of excited state intramolecular proton transfer (ESIPT) in room temperature solutions of 3-hydroxyflavone and derivatives. J Phys Chem A 105:3709–3718

    CAS  Google Scholar 

  95. Swinney TC, Kelley DF (1993) Proton transfer dynamics in substituted 3-hydroxyflavones: solvent polarization effects. J Chem Phys 99:211–221

    CAS  Google Scholar 

  96. Yu WS, Cheng CC, Cheng YM et al (2003) Excited-state intramolecular proton transfer in five-membered hydrogen-bonding systems: 2-pyridyl pyrazoles. J Am Chem Soc 125:10800–10801

    CAS  Google Scholar 

  97. Kijak M, Nosenko Y, Singh A et al (2007) Mode-selective excited-state proton transfer in 2-(2′-pyridyl)pyrazole isolated in a supersonic jet. J Am Chem Soc 129:2738–2739

    CAS  Google Scholar 

  98. Chou PT, Wei CY (1996) Photophysics of 10-hydeoxybenzo[h]quinoline in aqueous solution. J Phys Chem 100:17059–17066

    CAS  Google Scholar 

  99. Takeuchi T, Tahara T (2005) Coherent nuclear wavepacket motions in ultrafast excited-state intramolecular proton transfer: sub-30-fs resolved pump-probe absorption spectroscopy of 10-hydroxybenzo[h]quinoline in solution. J Phys Chem A 109:10199–10207

    CAS  Google Scholar 

  100. Kim CH, Joo T (2010) Coherent excited state intramolecular proton transfer probed by time-resolved fluorescence. Phys Chem Chem Phys. doi:10.1039/b915768a

    Google Scholar 

  101. Sytnik A, Del Valle JC (1995) Steady-state and time-resolved study of the proton-transfer fluorescence of 4-hydroxy-5-azaphenanthrene in model solvents and in complexes with human serum albumin. J Phys Chem 99:13028–13032

    CAS  Google Scholar 

  102. Roberts EL, Chou PT, Alexander TA et al (1995) Effects of organized media on the excited-state intramolecular proton transfer of 10-hydroxybenzo[h]quinoline. J Phys Chem 99:5431–5437

    CAS  Google Scholar 

  103. Abou-Zied OK, Jimenez R, Thompson EHZ et al (2002) Solvent-dependent photoinduced tautomerization of 2-(2′-hydroxyphenyl)benzoxazole. J Phys Chem A 106:3665–3672

    CAS  Google Scholar 

  104. Chou PT, Martinez ML, Studer SL (1992) The role of the cis-keto triplet state in the proton transfer cycle of 2-(2′-hydroxyphenyl)benzothiazole. Chem Phys Lett 195:586–590

    CAS  Google Scholar 

  105. Ikegami M, Arai T (2000) Laser flash photolysis study on hydrogen atom transfer of 2-(2-hydroxyphenyl)benzoxazole and 2-(2-hydroxyphenyl)benzothiazole in the triplet excited state. Chem Lett 9:996–997

    Google Scholar 

  106. Rini M, Dreyer J, Nibbering ETJ et al (2003) Ultrafast vibrational relaxation processes induced by intramolecular excited state hydrogen transfer. Chem Phys Lett 374:13–19

    CAS  Google Scholar 

  107. Brewer WE, Martinez ML, Chou PT (1990) Mechanism of the ground-state reverse proton transfer of 2-(2-hydroxyphenyl)benzothiazole. J Phys Chem 94:1915–1918

    CAS  Google Scholar 

  108. Ikegami M, Arai T (2002) Photoinduced intramolecular hydrogen atom transfer in 2-(2-hydroxyphenyl)benzoxazole and 2-(2-hydroxyphenyl)-benzothiazole studied by laser flash photolysis. J Chem Soc Perkin Trans 2:1296–1301

    Google Scholar 

  109. Al-Soufi W, Grellmann KH, Nickel B (1991) Keto-enol tautomerization of 2-(2′-hydroxyphenyl)benzoxazole and 2-(2′-hydroxy-4′-methylphenyl) benzoxazole in the triplet state: hydrogen tunneling and isotope effects. 1. Transient absorption kinetics. J Phys Chem 95:10503–10509

    CAS  Google Scholar 

  110. Tsien RJ (1998) The green fluorescence protein. Annu Rev Biochem 67:509–544

    CAS  Google Scholar 

  111. Agmon N (2005) Proton pathways in green fluorescence protein. Biophys J 88:2452–2461

    CAS  Google Scholar 

  112. Stoner-Ma D, Melief EH, Nappa J et al (2006) Proton relay reaction in green fluorescent protein (GFP): polarization-resolved ultrafast vibrational spectroscopy of isotopically edited GFP. J Phys Chem B 110:22009–22018

    CAS  Google Scholar 

  113. Mandal D, Tahara T, Meech SR (2004) Excited-state dynamics in the green fluorescence protein chromophore. J Phys Chem B 108:1102–1108

    CAS  Google Scholar 

  114. He X, Bell AF, Tonge PJ (2002) Synthesis and spectroscopic studies of model red fluorescent protein chromophores. Org Lett 4:1523–1526

    CAS  Google Scholar 

  115. Schaefer T (1975) A relationship between hydroxyl proton chemical shifts and torsional frequencies in some ortho-substituted phenol derivatives. J Phys Chem 79:1888–1890

    CAS  Google Scholar 

  116. Gepshtein R, Huppert D, Agmon N (2006) Deactivation mechanism of the green fluorescent chromophore. J Phys Chem B 110:4434–4442

    CAS  Google Scholar 

  117. Chen KY, Cheng YM, Lai CH et al (2007) Ortho green fluorescence protein synthetic chromophore; Excited-state intramolecular proton transfer via a seven-membered-ring hydrogen-bonding system. J Am Chem Soc 129:4534–4535

    CAS  Google Scholar 

  118. Chung WT, Chen BS, Chen KY et al (2009) Fluorescent protein red Kaede chromophore; one-step, high-yield synthesis and potential application for solar cells. Chem Comm 45:6982–6984

    Google Scholar 

  119. Borgis D, Hynes JT (1991) Molecular-dynamics simulation for a model nonadiabatic proton transfer reaction in solution. J Chem Phys 94:3619–3628

    CAS  Google Scholar 

  120. Borgis D, Hynes JT (1996) Curve crossing formulation for proton transfer reactions in solution. J Phys Chem 100:1118–1128

    CAS  Google Scholar 

  121. Kiefer PM, Hynes JT (2002) Nonlinear free energy relations for adiabatic proton transfer reactions in a polar environment. I. Fixed proton donor−acceptor separation. J Phys Chem A 106:1834–1849

    CAS  Google Scholar 

  122. Kiefer PM, Hynes JT (2002) Nonlinear free energy relations for adiabatic proton transfer reactions in a polar environment. II. Inclusion of the hydrogen bond vibration. J Phys Chem A 106:1850–1861

    CAS  Google Scholar 

  123. Hynes JT, Tran-Thi TH, Grunucci G (2002) Intermolecular photochemical proton transfer in solution: new insights and perspectives. J Photochem Photobiol A Chem 154:3–11

    CAS  Google Scholar 

  124. German ED, Kuznetsov AM (1981) Dependence of the hydrogen kinetic isotope effect on the reaction free energy. J Chem Soc, Faraday Trans 1 77:397–412

    Google Scholar 

  125. German ED, Kuznetsov AM, Dogonadze RR (1980) Theory of the kinetic isotope effect in proton transfer reactions in a polar medium. J Chem Soc, Faraday Trans 2 76:1128–1146

    Google Scholar 

  126. Morillo M, Cukier RI (1990) On the effects of solvent and intermolecular fluctuations in proton transfer reactions. J Chem Phys 92:4833–4838

    CAS  Google Scholar 

  127. Chou PT, Yu WS, Cheng YM et al (2004) Solvent-polarity tuning excited-state charge coupled proton-transfer reaction in p-N, N-ditolylaminosalicylaldehydes. J Phys Chem A 108:6487–6498

    CAS  Google Scholar 

  128. Cheng YM, Pu SC, Yu YC et al (2005) Spectroscopy and femtosecond dynamics of 7-N, N-diethylamino-3-hydroxyflavone. The correlation of dipole moments among various states to rationalize the excited-state proton transfer reaction. J Phys Chem A 109:11696–11706

    CAS  Google Scholar 

  129. Cheng YM, Pu SC, Hsu CJ et al (2006) Femtosecond dynamics on 2-(2′-hydroxy-4′-diethylaminophenyl)benzothiazole: solvent polarity in the excited-state proton transfer. ChemPhysChem 7:1372–1381

    CAS  Google Scholar 

  130. Gormin D, Kasha M (1988) Triple fluorescence in aminosalicylates. Modulation of normal, proton-transfer, and twisted intramolecular charge-transfer (TICT) fluorescence by physical and chemical perturbations. Chem Phys Lett 153:574–576

    CAS  Google Scholar 

  131. Chou PT, Martinez ML, Clements JH (1993) The observation of solvent-dependent proton-transfer/charge-transfer lasers from 4'-diethylamino-3-hydroxyflavone. Chem Phys Lett 204:395–399

    CAS  Google Scholar 

  132. Parsapour F, Kelley DF (1996) Torsional and proton transfer dynamics in substituted 3-hydroxyflavones. J Phys Chem 100:2791–2798

    CAS  Google Scholar 

  133. Shynkar VV, Mély Y, Duportail G et al (2003) Picosecond time-resolved fluorescence studies are consistent with reversible excited-state intramolecular proton transfer in 4′-(dialkylamino)-3-hydroxyflavones. J Phys Chem A 107:9522–9529

    CAS  Google Scholar 

  134. Ameer-Beg S, Ormson SM, Poteau X et al (2004) Ultrafast measurements of charge and excited-state intramolecular proton transfer in solutions of 4‘-(N, N-dimethylamino) derivatives of 3-hydroxyflavone. J Phys Chem A 108:6938–6943

    CAS  Google Scholar 

  135. Chou PT, Huang CH, Pu SC et al (2004) Tuning excited-state charge/proton transfer coupled reaction via the dipolar functionality. J Phys Chem A 108:6452–6454

    CAS  Google Scholar 

  136. Chou PT, Pu SC, Cheng YM et al (2005) Femtosecond dynamics on excited-state proton/charge-transfer reaction in 4’-N, N-diethylamino-3-hydroxyflavone. The role of dipolar vectors in constructing a rational mechanism. J Phys Chem A 109:3777–3787

    CAS  Google Scholar 

  137. Shephard MJ, Paddon-Row MN, Jordan KD (1993) Electronic coupling through saturated hydrocarbon bridges. Chem Phys 176:289–304

    CAS  Google Scholar 

  138. Paddon-Row MN, Shephard MJ (1997) Through-bond orbital coupling, the parity rule, and the design of “superbridges” which exhibit greatly enhanced electronic coupling: a natural bond orbital analysis. J Am Chem Soc 119:5355–5365

    CAS  Google Scholar 

  139. Napper AM, Head NJ, Oliver AM et al (2002) Use of U-shaped donor-bridge-acceptor molecules to study electron tunneling through nonbonded contacts. J Am Chem Soc 124:10171–10181

    CAS  Google Scholar 

  140. Chou PT, Yu WS, Wei CY et al (2001) Water-catalyzed excited-state double proton transfer in 3-cyano-7-azaindole: the resolution of the proton-transfer mechanism for 7-azaindoles in pure water. J Am Chem Soc 123:3599–3600

    CAS  Google Scholar 

  141. Hsieh CC, Chen KY, Hsieh WT et al (2008) Cyano analogues of 7-azaindole: probing excited-state charge-coupled proton transfer reactions in protic solvents. ChemPhyChem 9:2221–2229

    CAS  Google Scholar 

  142. Négrerie M, Gai F, Bellefuille SM et al (1991) Photophysics of a novel optical probe: 7-Azaindole. J Phys Chem 95:8663–8670

    Google Scholar 

  143. Mentus S, Maroncelli M (1998) Solvation and the excited-state tautomerization of 7-azaindole and 1-azacarbazole: computer simulations in water and alcohol solvents. J Phys Chem A 102:3860–3876

    Google Scholar 

  144. Seo J, Kim S, Park SY (2004) Strong solvatochromic fluorescence from the intramolecular charge-transfer state created by excited-state intramolecular proton transfer. J Am Chem Soc 126:11154–11155

    CAS  Google Scholar 

  145. Hsieh CC, Cheng YM, Hsu CJ et al (2008) Spectroscopy and femtosecond dynamics of excited-state proton transfer induced charge transfer reaction. J Phys Chem A 112:8323–8332

    CAS  Google Scholar 

  146. Craven IE, Hesling MR, Laver DR et al (1989) Polarizability anisotropy, magnetic anisotropy, and quadrupole moment of cyclohexane. J Phys Chem 93:627–631

    CAS  Google Scholar 

  147. Iwata K, Ozawa R, Hamaguchi H (2002) Analysis of the solvent- and temperature-dependent Raman spectral changes of S1 trans-stilbene and the mechanism of the trans to cis isomerization: dynamic polarization model of vibrational dephasing and the C=C double-bond rotation. J Phys Chem A 106:3614–3620

    CAS  Google Scholar 

  148. Merola F, Levy B, Demachy I, Pasquier H (2010) Photophysics and Spectroscopy of Fluorophores in the Green Fluorescent Protein Family. In: Demchenko AP (ed) Advanced Fluorescence Reporters in Chemistry and Biology I. Springer Ser Fluoresc 8:347–383

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pi-Tai Chou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hsieh, CC., Ho, ML., Chou, PT. (2010). Organic Dyes with Excited-State Transformations (Electron, Charge, and Proton Transfers). In: Demchenko, A. (eds) Advanced Fluorescence Reporters in Chemistry and Biology I. Springer Series on Fluorescence, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04702-2_7

Download citation

Publish with us

Policies and ethics