Skip to main content

Discovery of New Fluorescent Dyes: Targeted Synthesis or Combinatorial Approach?

  • Chapter
  • First Online:
Advanced Fluorescence Reporters in Chemistry and Biology I

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 8))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guilbault GG (1999) Practical fluorescence. Revised and expanded, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  2. Kim E, Park SB (2009) Chemistry as a prism: a review of light-emitting materials having tunable emission wavelengths. Chem Asian J 4:1646–1658

    Article  CAS  Google Scholar 

  3. Murray RDH, Méndez J, Brown SA (1982) The natural coumarins: occurrence, chemistry, and biochemistry. Wiley, New York

    Google Scholar 

  4. Finn GJ, Kenealy E, Creaven BS, Egan DA (2002) In vitro cytotoxic potential and mechanism of action of selected coumarins, using human renal cell lines. Cancer Lett 183:61–68

    Article  CAS  Google Scholar 

  5. Kirkiacharian S, Thuy DT, Sicsic S, Bakhchinian R, Kurkjian R, Tonnaire T (2002) Structure-activity relationships of some 3-substituted-4-hydroxycoumarins as HIV-1 protease inhibitors II. Farmaco 57:703–708

    Article  CAS  Google Scholar 

  6. Perkin WH (1868) Artificial production of coumarin and formation of its homologues. J Chem Soc 21:53–63

    Article  Google Scholar 

  7. Perkin WH (1868) Hydride of aceto-salicyl. J Chem Soc 21:181–186

    Article  Google Scholar 

  8. Perkin WH (1877) Formation of coumarin and of cinnamic and of other analogous acids from the aromatic aldehydes. J Chem Soc 31:388–427

    Article  Google Scholar 

  9. von Pechmann H, Duisberg C (1883) Ueber die Verbindungen der Phenol mit Acetessigäther. Chem Ber 16:2119–2128

    Article  Google Scholar 

  10. von Pechmann H (1884) Neue Bildungsweise der Cumarine. Synthese des daphnetins. I. Chem Ber 17:929–979

    Article  Google Scholar 

  11. Sethna S, Phadke C (1953) The Pechmann reaction. Org React 7:1–58

    Google Scholar 

  12. Cairns N, Harwood LM, Astles DP (1994) Tandem thermal claisen-cope rearrangements of coumarate derivatives. Total syntheses of the naturally occurring coumarins: suberosin, demethylsuberosin, ostruthin, balsamiferone and gravelliferone. J Chem Soc Perkin Trans 1:3101–3107

    Article  Google Scholar 

  13. Brufola G, Fringuelli F, Piermatti O, Pizzo F (1996) Simple and efficient one-pot preparation of 3-substituted coumarins in water. Heterocycles 43:1257–1266

    Article  CAS  Google Scholar 

  14. Bigi F, Chesini L, Maggi R, Sartori G (1999) Montmorillonite KSF as an inorganic, water stable, and reusable catalyst for the knoevenagel synthesis of coumarin-3-carboxylic acids. J Org Chem 64:1033–1035

    Article  CAS  Google Scholar 

  15. Shriner RL (1942) The reformatsky reaction. Org React 1:15–18

    Google Scholar 

  16. Yavari I, Hekmat-Shoar R, Zonuzi A (1998) A new and efficient route to 4-carboxymethylcoumarins mediated by vinyltriphenylphosphonium salt. Tetrahedron Lett 39:2391–2392

    Article  CAS  Google Scholar 

  17. Appel H (1935) Improved method for the synthesis of coumarins by V Pechmann’s method. J Chem Soc. Abstracts: 1031

    Google Scholar 

  18. Woods LL, Sapp J (1962) A new one-step synthesis of substituted coumarins. J Org Chem 27:3703–3705

    Article  CAS  Google Scholar 

  19. Robinson R, Weygand F (1941) Experiments on the synthesis of substances related to the sterols, Part XXX. J Chem Soc:386–391

    Google Scholar 

  20. Nadkarni AJ, Kudav NA (1981) A convenient synthesis of 8-Methoxy-4-methylcoumarin. Indian J Chem Sect B 20:719–720

    Google Scholar 

  21. John EVO, Israelstam SS (1961) Use of cation exchange resins in organic reactions. I. The von Pechmann reaction. J Org Chem 26:240–242

    Article  CAS  Google Scholar 

  22. Hoefnagel AJ, Gunnewegh EA, Downing RS, van Bekkum H (1995) Synthesis of 7-hydroxycoumarins catalysed by solid acid catalysts. J Chem Soc Chem Commun 1995:225–226

    Article  Google Scholar 

  23. Biswas GK, Basu K, Barua AK, Bhattacharyya P (1992) Montmorillonite clay as condensing agent in Pechmann reaction for the synthesis of coumarin derivatives. Indian J Chem 31B:628–628

    CAS  Google Scholar 

  24. Sabou R, Hoelderich WF, Ramprasad D, Weinand R (2005) Synthesis of 7-Hydroxy-4-methylcoumarin via the Pechmann reaction with Amberlyst ion-exchange resins as catalysts. J Catal 232:34–37

    Article  CAS  Google Scholar 

  25. Palaniappan S, Shekhar RC (2004) Synthesis of 7-Hydroxy-4-methyl coumarin using polyaniline supported acid catalyst. J Mol Catal A Chem 209:117–124

    Article  CAS  Google Scholar 

  26. Laufer MC, Hausmann H, Hölderich WF (2003) Synthesis of 7-hydroxycoumarins by Pechmann reaction using Nafion resin/silica nanocomposites as catalysts. J Catal 218:315–320

    Article  CAS  Google Scholar 

  27. Jones G (1967) Organic reactions. Wiley, New York

    Google Scholar 

  28. Watson BT, Christiansen GE (1998) Solid phase synthesis of substituted coumarin-3-carboxylic acids via the knoevenagel condensation. Tetrahedron Lett 39:6087–6090

    Article  CAS  Google Scholar 

  29. Wiener C, Schroeder CH, Link KP (1957) The synthesis of various 3-substituted-4-alkylcoumarins. J Am Chem Soc 79:5301–5303

    Article  CAS  Google Scholar 

  30. Song A, Wang X, Lam KS (2003) A convenient synthesis of coumarin-3-carboxylic acids via Knoevenagel condensation of Meldrum’s acid with ortho-hydroxyaryl aldehydes or ketones. Tetrahedron Lett 44:1755–1758

    Article  CAS  Google Scholar 

  31. Christie RM, Lui CH (2000) Studies of fluorescent dyes: part 2. An investigation of the synthesis and electronic spectral properties of substituted 3-(2′-benzimidazolyl)coumarins. Dyes Pigm 47:79–89

    Article  CAS  Google Scholar 

  32. Ayyangar NR, Srinivasan KV, Daniel T (1991) Polycyclic compounds Part VII. Synthesis, laser characteristics and dyeing behaviour of 7-diethylamino-2H-1-benzopyran-2-ones. Dyes Pigm 16:197–204

    Article  CAS  Google Scholar 

  33. Moylan CR (1994) Molecular hyperpolarizabilities of coumarin dyes. J Phys Chem 98:13513–13516

    Article  CAS  Google Scholar 

  34. Fischer A, Cremer C, Stelzer EHK (1995) Fluorescence of coumarins and xanthenes after two-photon absorption with a pulsed titanium-sapphire laser. Appl Opt 34:1989–2003

    Article  CAS  Google Scholar 

  35. Takadate A, Masuda T, Murata C, Tanaka T, Irikura M, Goya S (1995) Fluorescence characteristics of methoxycoumarins as novel fluorophores. Anal Sci 11:97–101

    Article  CAS  Google Scholar 

  36. Rangaswami S, Seshadri TR (1940) A Note on certain constitutional factors controlling visible fluorescence in compounds of the benzo-pyrone group. Proc Ind Acad Sci 12A:375–380

    CAS  Google Scholar 

  37. Rangaswami S, Seshadri TR, Venkateswarlu V (1941) The remarkable fluorescence of certain coumarin derivatives. Proc Ind Acad Sci 13A:316–322

    CAS  Google Scholar 

  38. Balaiah V, Seshadri TR, Venkateswarlu V (1942) Visible fluorescence and chemical constitution of compounds of the benzopyrone group. Part III. Further study of structural influences in coumarins. Proc Ind Acad Sci 16A:68–82

    CAS  Google Scholar 

  39. Wheelock CE (1959) The fluorescence of some coumarins. J Am Chem Soc 81:1348–1352

    Article  CAS  Google Scholar 

  40. Atkins RL, Bliss DE (1978) Substituted coumarins and azacoumarins. Synthesis and fluorescent properties. J Org Chem 43:1975–1980

    Article  CAS  Google Scholar 

  41. Sherman WR, Robins E (1968) Fluorescence of substituted 7-hydroxycoumarins. Anal Chem 40:803–805

    Article  CAS  Google Scholar 

  42. Takadate A, Masuda T, Murata C, Shibuya M, Isobe A (2000) Structural features for fluorescing present in methoxycoumarin derivatives. Chem Pharm Bull 48:256–260

    Article  CAS  Google Scholar 

  43. Murata C, Masuda T, Kamochi Y, Todoroki K, Yoshida H, Nohta H, Yamaguchi M, Takadate A (2005) Improvement of fluorescence characteristics of coumarins: syntheses and fluorescence properties of 6-methoxycoumarin and benzocoumarin derivatives as novel fluorophores emitting in the longer wavelength region and their application to analytical reagents. Chem Pharm Bull 53:750–758

    Article  CAS  Google Scholar 

  44. Schiedel MS, Briehn CA, Bäuerle P (2001) Single-compound libraries of organic materials: parallel synthesis and screening of fluorescent dyes. Angew Chem Int Ed 40:4677–4680

    Article  CAS  Google Scholar 

  45. Sivakumar K, Xie F, Cash BM, Long S, Barnhill HN, Wang Q (2004) A fluorogenic 1, 3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes. Org Lett 6:4603–4606

    Article  CAS  Google Scholar 

  46. Jamison JM, Krabill K, Hatwalkar A, Jamison E, Tsai CC (1990) Potentiation of the antiviral activity of poly r(A-U) by xanthene dyes. Cell Biol Int Rep 14:1075–1084

    Article  CAS  Google Scholar 

  47. Chibale K, Visser M, van Schalkwyk D, Smith PJ, Saravanamuthu A, Fairlamb AH (2003) Exploring the potential of xanthene derivatives as trypanothione reductase inhibitors and chloroquine potentiating agents. Tetrahedron 59:2289–2296

    Article  CAS  Google Scholar 

  48. Nestmann ER, Douglas GR, Matula TI, Grant CE, Kowbel DJ (1979) Mutagenic activity of rhodamine dyes and their impurities as detected by mutation induction in Salmonella and DNA damage in Chinese hamster ovary cells. Cancer Res 39:4412–4417

    CAS  Google Scholar 

  49. Shapiro HM (1988) Practical flow cytometry, 2nd edn. Alan R. Liss, New York

    Google Scholar 

  50. Haugland RP (2005) Handbook of fluorescence probes and research products, 10th edn. Molecular Probes, Eugene

    Google Scholar 

  51. Urano Y, Kamiya M, Kanda K, Ueno T, Hirose K, Nagano T (2005) Evolution of fluorescein as a platform for finely tunable fluorescence probes. J Am Chem Soc 127:4888–4894

    Article  CAS  Google Scholar 

  52. Ahn YH, Lee JS, Chang YT (2007) Combinatorial rosamine library and application to in vivo glutathione probe. J Am Chem Soc 129:4510–4511

    Article  CAS  Google Scholar 

  53. Han J, Burgess K (2009) Fluorescent indicators for intracellular pH. Chem Rev. doi:10.1021/cr900249z

    Google Scholar 

  54. Leonhardt H, Gordon L, Livingston R (1971) Acid-base equilibria of fluorescein and 2′, 7′-dichlorofluorescein. J Phys Chem 75:245–249

    Article  CAS  Google Scholar 

  55. Zanker V, Peter W (1958) Die prototropen Formen des Fluoresceins. Chem Ber 91:572–580

    Article  CAS  Google Scholar 

  56. Diehl H, Horchak-Morris N (1987) Studies on fluorescein V. The absorbance of fluorescein in the ultraviolet, as a function of pH. Talanta 34:739–741

    Article  CAS  Google Scholar 

  57. Tanaka K, Miura T, Umezawa N, Urano Y, Kikuchi K, Higuchi T, Nagano T (2001) Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen. J Am Chem Soc 123:2530–2536

    Article  CAS  Google Scholar 

  58. Miura T, Urano Y, Tanaka K, Nagano T, Ohkubo K, Fukuzumi S (2003) Rational design principle for modulating fluorescence properties of fluorescein-based probes by photoinduced electron transfer. J Am Chem Soc 125:8666–8671

    Article  CAS  Google Scholar 

  59. Yamaguchi K, Tamura Z, Maeda M (1997) Disodium fluorescein octahydrate. Acta Cryst C53:284–285

    CAS  Google Scholar 

  60. Shen Z, Röhr H, Rurack K, Uno H, Spieles M, Schulz B, Reck G, Ono N (2004) Boron-diindomethene (BDI) dyes and their tetrahydrobicyclo precursors-en route to a new class of highly emissive fluorophores for the red spectral range. Chem Eur J 10:4853–4871

    Article  CAS  Google Scholar 

  61. Goeb S, Ziessel R (2007) Convenient synthesis of green diisoindolodithienylpyrromethene-dialkynyl borane dyes. Org Lett 9:737–740

    Article  CAS  Google Scholar 

  62. Wada M, Ito S, Uno H, Murashima T, Ono N, Urano T, Urano Y (2001) Synthesis and optical properties of a new class of pyrromethene-BF2 complexes fused with rigid bicyclo rings and benzo derivatives. Tetrahedron Lett 42:6711–6713

    Article  CAS  Google Scholar 

  63. Whitaker JE, Haugland RP, Prendergast FG (1991) Spectral and photophysical studies of benzo[c]xanthenes dyes: dual emission pH sensors. Anal Biochem 194:330–344

    Article  CAS  Google Scholar 

  64. Lee LG, Berry GM, Chen CH (1989) Vita blue: a new 633-nm excitable fluorescent dye for cell analysis. Cytometry 10:151–164

    Article  Google Scholar 

  65. Fabian WMF, Schuppler S, Wolfbeis OS (1996) Effects of annulation on absorption and fluorescence characteristics of fluorescein derivatives: a computational study. J Chem Soc Perkin Trans 2(5):853–856

    Google Scholar 

  66. Yang Y, Lowry M, Xu X, Escobedo JO, Sibrian-Vazquez M, Wong L, Schowalter CM, Jensen TJ, Fronczek FR, Warner IM, Strongin RM (2008) Seminaphthofluorones are a family of water-soluble, low molecular weight, NIR-emitting fluorophores. Proc Natl Acad Sci USA 105:8829–8834

    Article  CAS  Google Scholar 

  67. Wagner BK, Carrinski HA, Ahn YH, Kim YK, Gilbert TJ, Fomina DA, Schreiber SL, Chang YT, Clemons PA (2008) Small-molecule fluorophores to detect cell-state switching in the context of high-throughput screening. J Am Chem Soc 130:4208–4209

    Article  CAS  Google Scholar 

  68. Gonçalves MST (2009) Fluorescent labeling of biomolecules with organic probes. Chem Rev 109:190–212

    Article  Google Scholar 

  69. Treibs A, Kreuzer FH (1968) Difluorboryl-Komplexe von Di- und tripyrrylmethenen. Justus Liebigs Ann Chem 718:208–223

    Article  CAS  Google Scholar 

  70. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932

    Article  CAS  Google Scholar 

  71. Yang Y, Lowry M, Schowalter CM, Fakayode SO, Escobedo JO, Xu X, Zhang H, Jensen TJ, Fronczek FR, Warner IM, Strongin RM (2006) An organic white light-emitting fluorophore. J Am Chem Soc 128:14081–14092

    Article  CAS  Google Scholar 

  72. Yang Y, Lowry M, Schowalter CM, Fakayode SO, Escobedo JO, Xu X, Zhang H, Jensen TJ, Fronczek FR, Warner IM, Strongin RM (2007) An organic white light-emitting fluorophore. J Am Chem Soc 129:1008–1008

    CAS  Google Scholar 

  73. Umezawa K, Nakamura Y, Makino H, Citterio D, Suzuki K (2008) Bright, color-tunable fluorescent dyes in the visible–near-infrared region. J Am Chem Soc 130:1550–1551

    Article  CAS  Google Scholar 

  74. Umezawa K, Matsui A, Nakamura Y, Citterio D, Suzuki K (2009) Bright, color-tunable fluorescent dyes in the Vis/NIR region: establishment of new “tailor-made” multicolor fluorophores based on borondipyrromethene. Chem Eur J 15:1096–1106

    Article  CAS  Google Scholar 

  75. Lavis LD, Raines RT (2008) Bright ideas for chemical biology. ACS Chem Biol 3:142–155

    Article  CAS  Google Scholar 

  76. Lee JS, Kang NY, Kim YK, Samanta A, Feng S, Kim HK, Vendrell M, Park JH, Chang YT (2009) Synthesis of a BODIPY library and its application to the development of live cell glucagon imaging probe. J Am Chem Soc 131:10077–10082

    Article  CAS  Google Scholar 

  77. Fabian J, Nakazumi H, Matsuoka M (1992) Near-infrared absorbing dyes. Chem Rev 92:1197–1226

    Article  CAS  Google Scholar 

  78. Ernst LA, Gupta RK, Mujumdar RB, Waggoner AS (1989) Cyanine dye labeling reagents for sulfhydryl groups. Cytometry 10:3–10

    Article  CAS  Google Scholar 

  79. Sturmer DM (1977) Syntheses and properties of cyanine and related dyes. In: Weissberger A, Taylor EC (eds) The chemistry of heterocyclic compounds: special topics in heterocyclic chemistry. Wiley, New York

    Google Scholar 

  80. Mishra A, Behera RK, Behera PK, Mishra BK, Behera GB (2000) Cyanines during the 1990s: a review. Chem Rev 100:1973–2012

    Article  CAS  Google Scholar 

  81. Gonçalves MST (2009) Fluorescent labeling of biomolecules with organic probes. Chem Rev 109:190–212

    Article  Google Scholar 

  82. Narayanan N, Patonay G (1995) A new method for the synthesis of heptamethine cyanine dyes: synthesis of new near-infrared fluorescent labels. J Org Chem 60:2391–2395

    Article  CAS  Google Scholar 

  83. Benson RC, Kues HA (1977) Absorption and fluorescence properties of cyanine dyes. J Chem Eng Data 22:379–383

    Article  CAS  Google Scholar 

  84. Mujumdar SR, Mujumdar RB, Grant CM, Waggoner AS (1996) Cyanine-labeling reagents: sulfobenzindocyanine succinimidyl esters. Bioconjugate Chem 7:356–362

    Article  CAS  Google Scholar 

  85. Kundu K, Knight SF, Willett N, Lee S, Taylor WR, Murthy N (2009) Hydrocyanines: a class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo. Angew Chem Int Ed 48:299–303

    Article  CAS  Google Scholar 

  86. Chen X, Conti PS, Moats RA (2004) In vivo near-infrared fluorescence imaging of integrin αvβ3 in brain tumor xenografts. Cancer Res 64:8009–8014

    Article  CAS  Google Scholar 

  87. Lin Y, Weissleder R, Tung CH (2002) Novel near-infrared cyanine fluorochromes: synthesis, properties, and bioconjugation. Bioconjugate Chem 13:605–610

    Article  Google Scholar 

  88. Wang S, Chang YT (2006) Combinatorial synthesis of benzimidazolium dyes and its diversity directed application toward GTP-selective fluorescent chemosensors. J Am Chem Soc 128:10380–10381

    Article  CAS  Google Scholar 

  89. Finney NS (2006) Combinatorial discovery of fluorophores and fluorescent probes. Curr Opin Chem Biol 10:238–245

    Article  CAS  Google Scholar 

  90. Rosania GR, Lee JW, Ding L, Yoon HS, Chang YT (2003) Combinatorial approach to organelle-targeted fluorescent library based on the styryl scaffold. J Am Chem Soc 125:1130–1131

    Article  CAS  Google Scholar 

  91. Lee JW, Jung M, Rosania GR, Chang YT (2003) Development of novel cell-permeable DNA sensitive dyes using combinatorial synthesis and cell-based screening. Chem Commun 1852–1853

    Google Scholar 

  92. Kim E, Koh M, Ryu J, Park SB (2008) Combinatorial discovery of full-color-tunable emissive fluorescent probes using a single core skeleton, 1, 2-dihydropyrrolo[3, 4-β]indolizin-3-one. J Am Chem Soc 130:12206–12207

    Article  CAS  Google Scholar 

  93. Higashiguchi K, Matsuda K, Asano Y, Murakami A, Nakamura S, Irie M (2005) Photochromism of dithienylethenes containing fluorinated thiophene rings. Eur J Org Chem:91–97

    Google Scholar 

  94. Teo YN, Wilson JN, Kool ET (2009) Polyfluorophores on a DNA backbone: a multicolor set of labels excited at one wavelength. J Am Chem Soc 131:3923–3933

    Article  CAS  Google Scholar 

  95. Gao J, Strässler C, Tahmassebi D, Kool ET (2002) Libraries of composite polyfluors built from fluorescent deoxyribosides. J Am Chem Soc 124:11590–11591

    Article  CAS  Google Scholar 

  96. Krueger AT, Kool ET (2008) Fluorescence of size-expanded DNA bases: reporting on DNA sequence and structure with an unnatural genetic set. J Am Chem Soc 130:3989–3999

    Article  CAS  Google Scholar 

  97. Wilson JN, Teo YN, Kool ET (2007) Efficient quenching of oligomeric fluorophores on a DNA backbone. J Am Chem Soc 129:15426–15427

    Article  CAS  Google Scholar 

  98. Gao J, Watanabe S, Kool ET (2004) Modified DNA analogues that sense light exposure with color changes. J Am Chem Soc 126:12748–12749

    Article  CAS  Google Scholar 

  99. Ren RXF, Chaudhuri NC, Paris PL, Rumney S IV, Kool ET (1996) Naphthalene, phenanthrene, and pyrene as DNA base analogues: synthesis, structure, and fluorescence in DNA. J Am Chem Soc 118:7671–7678

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Bum Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, E., Park, S.B. (2010). Discovery of New Fluorescent Dyes: Targeted Synthesis or Combinatorial Approach?. In: Demchenko, A. (eds) Advanced Fluorescence Reporters in Chemistry and Biology I. Springer Series on Fluorescence, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04702-2_5

Download citation

Publish with us

Policies and ethics