Skip to main content

Two-Photon Absorption in Near-IR Conjugated Molecules: Design Strategy and Structure–Property Relations

  • Chapter
  • First Online:

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 8))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pawlicki M, Collins HA, Denning RG, Anderson HL (2009) Two-photon absorption and the design of two-photon dyes. Angew Chem Int Ed Engl 48:3244–3266

    Article  CAS  Google Scholar 

  2. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377

    Article  CAS  Google Scholar 

  3. Williams RM, Piston DW, Webb WW (1994) Two-photon molecular excitation provides intrinsic 3-dimensional resolution for laser-based microscopy and microphotochemistry. FASEB J 8:804–813

    CAS  Google Scholar 

  4. So PT, Dong CY, Masters BR, Berland KM (2000) Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng 2:399–429

    Article  CAS  Google Scholar 

  5. Piston DW (1999) Imaging living cells and tissues by two-photon excitation microscopy. Trends Cell Biol 9:66–69

    Article  CAS  Google Scholar 

  6. König K (2000) Multiphoton microscopy in life sciences. J Microsc 200:83–104

    Article  Google Scholar 

  7. Diaspro A, Robello M (2000) Two-photon excitation of fluorescence for three-dimensional optical imaging of biological structures. J Photochem Photobiol B 55:1–8

    Article  CAS  Google Scholar 

  8. Rubart M (2004) Two-photon microscopy of cells and tissue. Circ Res 95:1154–1166

    Article  CAS  Google Scholar 

  9. Diaspro A, Chirico G, Federici F, Cannone F, Beretta S, Robello M (2001) Two-photon microscopy and spectroscopy based on a compact confocal scanning head. J Biomed Opt 6:300–310

    Article  CAS  Google Scholar 

  10. Scherschel JA, Rubart M (2008) Cardiovascular imaging using two-photon microscopy. Microsc Microanal 14:492–506

    Article  CAS  Google Scholar 

  11. Bates M, Huang B, Zhuang X (2008) Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Curr Opin Chem Biol 12:505–514

    Article  CAS  Google Scholar 

  12. Maria GoeppertMayer Biography http://nobelprize.org/nobel_prizes/physics/laureates/1963/mayer-bio.html

  13. Goeppert-Mayer M (1931) Uber elementarakte mit zwei quantensprungen. Ann Phys 401:273–294

    Article  Google Scholar 

  14. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  CAS  Google Scholar 

  15. He GS, Tan LS, Zheng Q, Prasad PN (2008) Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem Rev 108:1245–1330

    Article  CAS  Google Scholar 

  16. Reinhardt BA, Brott LL, Clarson SJ, Dillard AG, Bhatt JC, Kannan R, Yuan L, He GS, Prasad PN (1998) Highly active two-photon dyes: design, synthesis, and characterization toward application. Chem Mater 10:1863–1874

    Article  CAS  Google Scholar 

  17. Terenziani F, D’Avino G, Painelli A (2007) Multichromophores for nonlinear optics: designing the material properties by electrostatic interactions. Chemphyschem 8:2433–2444

    Article  CAS  Google Scholar 

  18. Bhawalkar JD, He GS, Prasad PN (1996) Nonlinear multiphoton processes in organic and polymeric materials. Rep Prog Phys 59:1041–1070

    Article  CAS  Google Scholar 

  19. Albota M, Beljonne D, Bredas JL, Ehrlich JE, Fu JF, Heikal AA, Hess SE, Kogej T, Levin MD, Marder SR, McCord-Maughon D, Perry JW, Röckel H, Rumi M, Subramaniam G, Webb WW, Wu XL, Xu C (1998) Design of organic molecules with large two-photon absorption cross sections. Science 281:1653–1656

    Article  CAS  Google Scholar 

  20. Corredor CC, Huang Z, Belfield KD (2006) Two-photon 3D optical data storage via fluorescence modulation of an efficient fluorene dye by a photochromic diarylethene. Adv Mater 18:2910–2914

    Article  CAS  Google Scholar 

  21. Cumpston BH, Ananthavel SP, Barlow S, Dyer DL, Ehrlich JE, Erskine LL, Heikal AA, Kuebler SM, Lee IS, McCord-Maughon D, Qin J, Röckel H, Rumi M, Wu XL, Marder SR, Perry JW (1999) Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398:51–54

    Article  CAS  Google Scholar 

  22. Kuebler SM, Rumi M (2004) Nonlinear optics - applications: three-dimensional microfabrication. In: Guenther RD, Steel DG, Bayvel L (eds) Encyclopedia of modern optics. Oxford, Elsevier

    Google Scholar 

  23. Picot A, D’Aléo A, Baldeck PL, Grichine A, Duperray A, Andraud C, Maury O (2008) Long-lived two-photon excited luminescence of water-soluble europium complex: applications in biological imaging using two-photon scanning microscopy. J Am Chem Soc 130:1532–1533

    Article  CAS  Google Scholar 

  24. Briñas RP, Troxler T, Hochstrasser RM, Vinogradov SA (2005) Phosphorescent oxygen sensor with dendritic protection and two-photon absorbing antenna. J Am Chem Soc 127:11851–11862

    Article  Google Scholar 

  25. Kim S, Ohulchanskyy TY, Pudavar HE, Pandey RK, Prasad PN (2007) Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J Am Chem Soc 129:2669–2675

    Article  CAS  Google Scholar 

  26. Ogawa K, Kobuke Y (2008) Recent advances in two-photon photodynamic therapy. Anticancer Agents Med Chem 8:269–279

    Article  CAS  Google Scholar 

  27. Ogawa K, Kobuke Y (2009) Design of two-photon absorbing materials for molecular optical memory and photodynamic therapy. Org Biomol Chem 7:2241–2246

    Article  CAS  Google Scholar 

  28. Sutherland RL (1996) Handbook of nonlinear optics. Marcel Dekker, New York

    Google Scholar 

  29. Sheik-Bahae M, Hutchings DC, Hagan DJ, Van Stryland EW (1991) Dispersion of bound electronic nonlinear refraction in solids. IEEE J Quantum Electron 27:1296–1309

    Article  CAS  Google Scholar 

  30. Hutchings DC, Van Stryland EW (1992) Nondegenerate 2-photon absorption in zinc-blend semiconductors. J Opt Soc Am B 9:2065–2074

    Article  CAS  Google Scholar 

  31. Sheik-Bahae M, Wang J, Van Stryland EW (1994) Nondegenerate optical Kerr-effect in semiconductors. IEEE J Quantum Electron 30:249–255

    Article  CAS  Google Scholar 

  32. Hales JM, Hagan DJ, Van Stryland EW, Schafer KJ, Morales AR, Belfield KD, Pacher P, Kwon O, Bredas JL (2004) Resonant enhancement of two-photon absorption in substituted fluorine molecules. J Chem Phys 121:3152–3160

    Article  CAS  Google Scholar 

  33. Orr BJ, Ward JF (1971) Perturbation theory of the non-linear optical polarization of an isolated system. Mol Phys 20:513–526

    Article  CAS  Google Scholar 

  34. Dirk CW, Cheng L, Kuzyk MG (1992) A simplified three-level model describing the molecular third-order nonlinear optical susceptibility. Int J Quantum Chem 43:27–36

    Article  CAS  Google Scholar 

  35. Kuzyk MG, Dirk CW (1990) Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility. Phys Rev A 41:5098–5109

    Article  CAS  Google Scholar 

  36. Birge RR, Pierce BM (1979) A theoretical analysis of two-photon properties of linear polyenes and the visual chromophores. J Chem Phys 70:165–178

    Article  CAS  Google Scholar 

  37. Cronstrand P, Luo Y, Agren H (2002) Generated few-state models for two-photon absorption of conjugated molecules. Chem Phys Lett 352:262–269

    Article  CAS  Google Scholar 

  38. Monson PR, McClain WM (1970) Polarization dependence of the two-photon absorption of tumbling molecules with application to liquid 1-chloronaphthalene and benzene. J Chem Phys 53:29–37

    Article  CAS  Google Scholar 

  39. Kamada K, Ohta K, Iwase Y, Kondo K (2003) Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak. Chem Phys Lett 372:386–393

    Article  CAS  Google Scholar 

  40. Ohta K, Kamada K (2006) Theoretical investigation of two-photon absorption allowed excited states in symmetrically substituted diacetylenes by ab initio molecular-orbital method. J Chem Phys 124:124303

    Article  Google Scholar 

  41. Lakowicz JR (1999) Principle of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum, New York

    Book  Google Scholar 

  42. Ramakrishna G, Goodson T III, Rogers-Haley JE, Cooper TM, McLean DG, Urbas A (2009) Ultrafast intersystem crossing: excited state dynamics of platinum acetylide complexes. J Phys Chem C 113:1060–1066

    Article  CAS  Google Scholar 

  43. Kleinschmidt J, Rentsch S, Tottleben W, Wilhelmi B (1974) Measurement of strong nonlinear absorption in stilbene-chloroform solutions, explained by the superposition of two-photon absorption and one-photon absorption from the excited state. Chem Phys Lett 24:133–135

    Article  CAS  Google Scholar 

  44. Kannan R, He GS, Lin TC, Prasad PN, Vaia RA, Tan LS (2004) Toward highly active two-photon absorbing liquids. Synthesis and characterization of 1, 3, 5-triazine-based octupolar molecules. Chem Mater 16:185–194

    Article  CAS  Google Scholar 

  45. Ehrlich JE, Wu XL, Lee IS, Hu ZY, Röckel H, Marder SR, Perry JW (1997) Two-photon absorption and broadband optical limiting with bis-donor stilbenes. Opt Lett 22:1843–1845

    Article  CAS  Google Scholar 

  46. Webster S, Odom SA, Padilha LA, Przhonska OV, Peceli D, Hu H, Nootz G, Kachkovski AD, Matichak J, Barlow S, Anderson HL, Marder SR, Hagan DJ, Van Stryland EW (2009) Linear and nonlinear spectroscopy of a porphyrin-squaraine-porphyrin conjugated system. J Phys Chem B 113:14854–14867

    Article  CAS  Google Scholar 

  47. Sutherland RL, Brant MC, Heinrichs J, Rogers JE, Slagle JE, McLean DG, Fleitz PA (2005) Excited-state characterization and effective three-photon absorption model of two-photon-induced excited-state absorption in organic push-pull charge-transfer chromophores. J Opt Soc Am B 22:1939–1948

    Article  CAS  Google Scholar 

  48. Mishra A, Behera RK, Behera PK, Mishra BK, Behera GB (2000) Cyanines during the 1990s: a review. Chem Rev 100:1973–2012

    Article  CAS  Google Scholar 

  49. Fabian J, Nakazumi H, Matsuoka M (1992) Near-infrared absorbing dyes. Chem Rev 92:1197–1226

    Article  CAS  Google Scholar 

  50. Peyghambarian N, Dalton L, Jen A, Kippelen B, Marder S, Norwood R, Perry J (2006) Technological advances brighten horizons for organic nonlinear optics. Laser Focus World 42:85–94

    CAS  Google Scholar 

  51. Daehne S (1978) Color and constitution: one hundred years of research. Science 199:1163–1167

    Article  CAS  Google Scholar 

  52. Meyers F, Marder SR, Pierce BM, Bredas JL (1994) Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ ) and bond length alternation. J Am Chem Soc 116:10703–10714

    Article  CAS  Google Scholar 

  53. Beverina L, Fu J, Leclercq A, Zojer E, Pacher P, Barlow S, Van Stryland EW, Hagan DJ, Brédas JL, Marder SR (2005) Two-photon absorption at telecommunications wavelengths in a dipolar chromophore with a pyrrole auxiliary donor and thiazole auxiliary acceptor. J Am Chem Soc 127:7282–7283

    Article  CAS  Google Scholar 

  54. Hales JM, Zheng S, Barlow S, Marder SR, Perry JW (2006) Bisdioxaborine polymethines with large third-order nonlinearities for all-optical signal processing. J Am Chem Soc 128:11362–11363

    Article  CAS  Google Scholar 

  55. Fisher JAN, Susumu K, Therien MJ, Yodh AG (2009) One- and two-photon absorption of highly conjugated multiporphyrin systems in the two-photon Soret transition region. J Chem Phys 130:134506

    Article  Google Scholar 

  56. Eaton DF (1988) Reference materials for fluorescence measurement. Pure Appl Chem 60:1107–1114

    Article  CAS  Google Scholar 

  57. Webster S, Padilha LA, Hu H, Przhonska OV, Hagan DJ, Van Stryland EW, Bondar MV, Davydenko IG, Slominsky YL, Kachkovski AD (2008) Structure and linear spectroscopic properties of near IR polymethine dyes. J Lumin 128:1927–1936

    Article  CAS  Google Scholar 

  58. Gerasov AO, Shandura MP, Kovtun YP (2008) Series of polymethine dyes derived from 2, 2-difluoro-1, 3, 2-(2H)-dioxaborine of 3-acetyl-7-diethylamino-4-hydroxycoumarin. Dyes Pigm 77:598–607

    Article  CAS  Google Scholar 

  59. Padilha LA, Webster S, Przhonska OV, Hu H, Peceli D, Ensley TR, Bondar MV, Gerasov AO, Kovtun YP, Shandura MP, Kachkovski AD, Hagan DJ, Van Stryland EW (2010) Efficient two-photon absorbing acceptor-π-acceptor polymethine dyes. J Phys Chem A, Submitted

    Google Scholar 

  60. Strickler SJ, Berg RA (1962) Relationship between absorption intensity and fluorescence lifetime of molecules. J Chem Phys 37:814–822

    Article  CAS  Google Scholar 

  61. Negres RA, Przhonska OV, Hagan DJ, Van Stryland EW, Bondar MV, Slominsky YL, Kachkovski AD (2001) The nature of excited-state absorption in polymethine and squarylium molecules. IEEE J Sel Top Quantum Electron 7:849–863

    Article  CAS  Google Scholar 

  62. Webster S, Fu J, Padilha LA, Przhonska OV, Hagan DJ, Van Stryland EW, Bondar MV, Slominsky YL, Kachkovski AD (2008) Comparison of nonlinear absorption in three similar dyes: polymethine, squaraine, and tetraone. Chem Phys 348:143–151

    Article  CAS  Google Scholar 

  63. Lessing HE, Von Jena A (1976) Separation of rotational diffusion and level kinetics in transient absorption spectroscopy. Chem Phys Lett 42:213–217

    Article  CAS  Google Scholar 

  64. Sheik Bahae M, Said AA, Van Stryland EW (1989) High-sensitivity, single beam n2 measurements. Opt Lett 14:955–957

    Article  CAS  Google Scholar 

  65. Sheik-Bahae M, Said AA, Wei TH, Hagan DJ, Van Stryland EW (2007) Special 30th anniversary feature: sensitive measurement of optical nonlinearities using a single beam. IEEE LEOS Newslett 21:17–35

    Google Scholar 

  66. Sheik-Bahae M, Said AA, Hagan DJ, Van Stryland EW (1990) Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron 26:760–769

    Article  CAS  Google Scholar 

  67. Johnston TF (1998) Beam propagation (M2) measurement made as easy as it gets: the four-cuts method. Appl Opt 37:4840–4850

    Article  CAS  Google Scholar 

  68. Firester AH, Heller ME, Sheng P (1977) Knife-edge scanning measurements of subwavelength focused light beams. Appl Opt 16:1971–1974

    Article  CAS  Google Scholar 

  69. Weber HP (1967) Method for pulsewidth measurement of ultrashort light pulses generated by phase-locked lasers using nonlinear optics. J Appl Phys 38:2231–2234

    Article  CAS  Google Scholar 

  70. Diels JC, Rudolph W (1996) Ultrashort laser pulse phenomena: fundamentals, techniques, and applications on a femtosecond time scale. Academic, San Diego CA, pp 365–399

    Google Scholar 

  71. Balu M, Hales J, Hagan DJ, Van Stryland EW (2005) Dispersion of nonlinear refraction and two-photon absorption using a white-light continuum Z-scan. Opt Express 13:3594–3599

    Article  CAS  Google Scholar 

  72. Balu M, Padilha LA, Hagan DJ, Van Stryland EW, Yao S, Belfield K, Zheng S, Barlow S, Marder S (2008) Broadband Z-scan characterization using a high-spectral-irradiance, high-quality supercontinuum. J Opt Soc Am B 25:159–165

    Article  CAS  Google Scholar 

  73. Webster S, Padilha L, Przhonska O, Peceli D, Hu H, Slominsky Y, Kachkovski A, Tolmachov A, Kurdyukov V, Hagan D, Van Stryland E (2009) Enhancement of triplet yields in cyanine-like molecules. Laser Science XXV, OSA Technical Digest (CD) paper: LSTuG2

    Google Scholar 

  74. Santos PF, Reis LV, Duarte I, Serrano JP, Almeida P, Oliveira AS, Vieira Ferreira LF (2005) Synthesis and photochemical evaluation of iodinated squarylium cyanine dyes. Helv Chim Acta 88:1135–1143

    Article  CAS  Google Scholar 

  75. Lim JH, Przhonska OV, Khodia S, Yang S, Ross TS, Hagan DJ, Van Stryland EW, Bondar MV, Slominsky YL (1999) Polymethine and squarylium molecules with large excited-state absorption. Chem Phys 245:79–97

    Article  CAS  Google Scholar 

  76. Kaiser W, Garrett CGB (1961) Two-photon excitation in CaF2:Eu2+. Phys Rev Lett 7:229–231

    Article  CAS  Google Scholar 

  77. Xu C, Webb WW (1996) Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt Soc Am B 13:481–491

    Article  CAS  Google Scholar 

  78. Padilha LA, Webster S, Hu H, Przhonska OV, Hagan DJ, Van Stryland EW, Bondar MV, Davydenko IG, Slominsky YL, Kachkovski AD (2008) Excited state absorption and decay kinetics of near IR polymethine dyes. Chem Phys 352:97–105

    Article  CAS  Google Scholar 

  79. Iordanov TD, Davis JL, Masunov AE, Levenson A, Przhonska OV, Kachkovski AD (2009) Symmetry breaking in cationic polymethine dyes, part 1: ground state potential energy surfaces and solvent effects on electronic spectra of streptocyanines. Int J Quantum Chem 109:3592–3601

    Article  CAS  Google Scholar 

  80. Ryabitsky AB, Kachkovski AD, Przhonska OV (2007) Symmetry breaking in cationic and anionic polymethine dyes. J Mol Struct-Theochem 802:75–83

    Article  CAS  Google Scholar 

  81. Lepkowicz RS, Przhonska OV, Hales JM, Fu J, Hagan DJ, Van Stryland EW, Bondar MV, Slominsky YL, Kachkovski AD (2004) Nature of the electronic transitions in thiacarbocyanines with a long polymethine chain. Chem Phys 305:259–270

    Article  CAS  Google Scholar 

  82. Su WP, Schrieffer JR, Heeger AJ (1979) Soliton in polyacetylene. Phys Rev Lett 42:1698–1701

    Article  CAS  Google Scholar 

  83. Fu J, Padilha LA, Hagan DJ, Van Stryland EW, Przhonska OV, Bondar MV, Slominsky YL, Kachkovski AD (2007) Molecular structure – two-photon absorption property relations in polymethine dyes. J Opt Soc Am B 24:56–66

    Article  CAS  Google Scholar 

  84. Luo Y, Norman P, Macak P, Ågren H (2000) Solvent-induced two-photon absorption of a push − pull molecule. J Phys Chem A 104:4718–4722

    Article  CAS  Google Scholar 

  85. Terenziani F, Katan C, Badaeva E, Tretiak S, Blanchard-Desce M (2008) Enhanced two-photon absorption of organic chromophores: theoretical and experimental assessments. Adv Mater 20:4641–4678

    Article  CAS  Google Scholar 

  86. Padilha LA, Webster S, Przhonska OV, Hu H, Peceli D, Rosch JL, Bondar MV, Gerasov AO, Kovtun YP, Shandura MP, Kachkovski AD, Hagan DJ, Van Stryland EW (2009) Nonlinear absorption in a series of donor–π–acceptor cyanines with different conjugation lengths. J Mater Chem 19:7503–7513

    Article  CAS  Google Scholar 

  87. Chung SJ, Zheng S, Odani T, Beverina L, Fu J, Padilha LA, Biesso A, Hales JM, Zhan X, Schmidt K, Ye A, Zojer E, Barlow S, Hagan DJ, Van Stryland EW, Yi Y, Shuai Z, Pagani GA, Brédas JL, Perry JW, Marder SR (2006) Extended squaraine dyes with large two-photon absorption cross-sections. J Am Chem Soc 128:14444–14445

    Article  CAS  Google Scholar 

  88. Fu J, Padilha LA, Hagan DJ, Van Stryland EW, Przhonska OV, Bondar MV, Slominsky YL, Kachkovski AD (2007) Experimental and theoretical approaches to understanding two-photon absorption spectra in polymethine and squaraine molecules. J Opt Soc Am B 24:67–76

    Article  Google Scholar 

  89. Hu H, Gerasov AO, Padilha LA, Przhonska OV, Webster S, Shandura MP, Kovtun YP, Masunov AE, Hagan DJ, Van Stryland EW (2010) Two-photon absorption in single crystals of cyanine-like dye. CLEO/QELS 2010, San Jose CA, Submitted

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga V. Przhonska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Przhonska, O.V. et al. (2010). Two-Photon Absorption in Near-IR Conjugated Molecules: Design Strategy and Structure–Property Relations. In: Demchenko, A. (eds) Advanced Fluorescence Reporters in Chemistry and Biology I. Springer Series on Fluorescence, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04702-2_4

Download citation

Publish with us

Policies and ethics