Skip to main content

Long-Wavelength Probes and Labels Based on Cyanines and Squaraines

  • Chapter
  • First Online:
Advanced Fluorescence Reporters in Chemistry and Biology I

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 8))

Abstract

In this review, we make an attempt to compare the characteristics and applications of red and near infrared cyanine and squaraine dyes used for biological research, biomedical assays, and high-throughput screening. While the favorable photophysical properties of cyanine dyes makes them predestined as covalent labels, the environmentally sensitive squaraine dyes are utilizable as both florescent probes and labels. Reducing the aggregation tendencies of these dyes in aqueous media seems to be one of the most promising ways to improve their brightness, fluorescence lifetimes, and photostability. Indolenine-based squaraines including ring-substituted squaraines exhibit great potential for the design of bright and sensitive fluorescent probes and labels with increased photostability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  2. Demchenko AP (2010) Comparative analysis of fluorescence reporter signals based on intensity, anisotropy, time-resolution and wavelength-ratiometry. In: Demchenko AP (ed) Advanced Fluorescence Reporters in Chemistry and Biology I. Springer Ser Fluoresc 8:3–24

    Google Scholar 

  3. Miller JN (2008) Long-wavelength and near-infrared fluorescence: state of the art, future applications, and standards. Springer Ser Fluoresc 5:147–162

    Article  CAS  Google Scholar 

  4. Mishra A, Behera RK, Behera PK, Mishra BK, Behera GB (2000) Cyanines during the 1990s: a review. Chem Rev 100:1973–2011

    Article  CAS  Google Scholar 

  5. Gonçalves MST (2009) Fluorescent labeling of biomolecules with organic probes. Chem Rev 109:190–212

    Article  Google Scholar 

  6. Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic, New York

    Google Scholar 

  7. Gupta RR, Strekowski L (eds) (2008) Heterocyclic polymethine dyes. Topics in heterocyclic chemistry, vol 14. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  8. Fei X, Gu Y (2009) Progress in modifications and applications of fluorescent dye probe. Prog Nat Sci 19:1–7

    Article  CAS  Google Scholar 

  9. Williams CHG (1856) Trans Roy Soc Edinburgh 21:377

    Article  Google Scholar 

  10. Sturmer DM (1977) Synthesis and properties – cyanine and related dyes. In: Weissberger A, Taylor EC (eds) The chemistry of heteroaromatic compounds, vol 30. Wiley, New York

    Google Scholar 

  11. Mujumdar RB, Ernst LA, Mujumdar SR, Lewis CJ, Waggoner AS (1993) Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjugate Chem 4:105–111

    Article  CAS  Google Scholar 

  12. Gruber HJ, Hahn CD, Kada G, Riener CK, Harms GS, Ahrer W, Dax TG, Knaus HG (2000) Anomalous fluorescence enhancement of Cy3 and Cy3.5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalent linking to IgG and noncovalent binding to avidin. Bioconjugate Chem 11:696–704

    Article  CAS  Google Scholar 

  13. Kuznetsova VE, Davydov AV, Vasiliskov VA, Stomakhin AA, Chudinov AV, Zasedatelev AS (2007) Novel asymmetric indodicarbocyanine dyes. Russ Chem Bull Int Edit 56:2263–2267

    Article  CAS  Google Scholar 

  14. Licha K, Riefke B, Semmler W, Speck U, Hilger CS (2000) US Patent 6083485

    Google Scholar 

  15. Haugland RP (2002) Handbook of fluorescence probes and research products, 9th edn. Molecular Probes, Eugene

    Google Scholar 

  16. Leung WY, Cheung CY, Yue S (2002) US Patent Application 20020077487

    Google Scholar 

  17. Patsenker L, Tatarets A, Kolosova O, Obukhova O, Povrozin Y, Fedyunyayeva I, Yermolenko I, Terpetschnig E (2008) Fluorescent probes and labels for biomedical applications. Ann New York Acad Sci 1130:179–187

    Article  CAS  Google Scholar 

  18. Tatarets AL, Fedyunyayeva IA, Dyubko TS, Povrozin YA, Doroshenko AO, Terpetschnig EA, Patsenker LD (2006) Ring-substituted squaraine dyes as probes and labels for fluorescence assays. Anal Chim Acta 570:214–223

    Article  CAS  Google Scholar 

  19. Povrozin YA, Kolosova OS, Obukhova OM, Tatarets AL, Sidorov VI, Terpetschnig EA, Patsenker LD (2009) Seta-633 – a NIR fluorescence lifetime label for low-molecular-weight analytes. Bioconjugate Chem 20:1807–1812

    Article  CAS  Google Scholar 

  20. Czerney P, Lehmann F, Wenzel M, Buschmann V, Dietrich A, Mohr GJ (2001) Tailor-made dyes for fluorescence correlation spectroscopy (FCS). Biol Chem 382:495–498

    Article  CAS  Google Scholar 

  21. Luschtinetz F, Dosche C, Kumke MU (2009) Influence of streptavidin on the absorption and fluorescence properties of cyanine dyes. Bioconjugate Chem 20:576–582

    Article  CAS  Google Scholar 

  22. Singh R, Gorski G, Frenzel G (2002) US Patent 6403807

    Google Scholar 

  23. Terpetschnig EA, Patsenker L, Tatarets A, Fedyunyaeva I, Borovoy I (2003) WO Patent 03087052

    Google Scholar 

  24. Diwu Z, Zhang J, Tang Y (2006) WO Patent 2006047452

    Google Scholar 

  25. Kulinich AV, Derevyanko NA, Ishchenko AA, Bondarev SL, Knyukshto VN (2008) Structure and fluorescence properties of indole cyanine and merocyanine dyes with partially locked polymethine chain. J Photochem Photobiol A: Chem 200:106–113

    Article  CAS  Google Scholar 

  26. Reddington MV (2007) Synthesis and properties of phosphonic acid containing cyanine and squaraine dyes for use as fluorescent labels. Bioconjugate Chem 18:2178–2190

    Article  CAS  Google Scholar 

  27. Buschmann V, Weston KD, Sauer M (2003) Spectroscopic study and evaluation of red-absorbing fluorescent dyes. Bioconjugate Chem 14:195–204

    Article  CAS  Google Scholar 

  28. Narayanan N, Strekowski L, Lipowska M, Patonay G (1995) A new method for the synthesis of heptamethine cyanine dyes: synthesis of new near infrared fluorescent labels. J Org Chem 60:2391–2395

    Article  CAS  Google Scholar 

  29. Peng X, Song F, Lu E, Wang Y, Zhou W, Fan J, Gao Y (2005) Heptamethine cyanine dyes with a large stokes shift and strong fluorescence: a paradigm for excited-state intramolecular charge transfer. J Am Chem Soc 127:4170–4171

    Article  CAS  Google Scholar 

  30. Kovar J, Chen J, Draney DR, Olive MD, Volcheck WM, Xu X, Lugade AG, Narayanan N (2009) US Patent 7597878

    Google Scholar 

  31. DiVittorio KM, Leevy WM, O’Neil EJ, Johnson JR, Vakulenko S, Morris JD, Rosek KD, Serazin N, Hilkert S, Hurley S, Marquez M, Smith BD (2008) Zinc(II) coordination complexes as membrane-active fluorescent probes and antibiotics. Chembiochem 9:286–293

    Article  CAS  Google Scholar 

  32. Sato S, Tsunoda M, Suzuki M, Kutsuna M, Takido-uchi K, Shindo M, Mizuguchi H, Obara H, Ohya H (2009) Synthesis and spectral properties of polymethine-cyanine dye–nitroxide radical hybrid compounds for use as fluorescence probes to monitor reducing species and radicals. Spectrochim Acta A 71:2030–2039

    Article  Google Scholar 

  33. Armitage BA (2005) Cyanine dye–DNA groove binding, and aggregation. Top Curr Chem 253:55–76

    CAS  Google Scholar 

  34. Licha K, Hessenius C, Becker A, Henklein P, Bauer M, Wisniewski S, Wiedenmann B, Semmler W (2001) Synthesis, characterization, and biological properties of cyanine-labeled somatostatin analogues as receptor-targeted fluorescent probes. Bioconjugate Chem 12:44–50

    Article  CAS  Google Scholar 

  35. Berezin MY, Lee H, Akers W, Achilefu S (2007) Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems. Biophysical J 93:2892–2899

    Article  CAS  Google Scholar 

  36. Mojzych M, Henary M (2008) Synthesis of cyanine dyes. In: Gupta RR, Strekowski L (eds) Topics in heterocyclic chemistry, vol 14. Springer, Berlin, Heidelberg, pp 1–9

    Google Scholar 

  37. Terpetschnig E, Wolfbeis OS (1998) Luminescent probes for NIR sensing applications. In: Daehne S, Resch-Genger U, Wolfbeis OS (eds) Near-infrared dyes for high technology applications, NATO ASI Ser 3, vol 53. Kluwer Academic, Dordrecht (NL), pp 161–182

    Chapter  Google Scholar 

  38. Sprenger HE, Ziegenbein W (1966) Condensation products of squaric acid and tertiary aromatic amines. Angew Chem Int Ed Engl 5:894

    Article  Google Scholar 

  39. Sprenger HE, Ziegenbein W (1967) Das Cyclobuten-diylium-Kation, ein neuartiger Chromophor aus Quadratsäure. Angew Chem 79:581–582

    Article  Google Scholar 

  40. Treibs A, Jacob K (1966) Über Tetracyclotrimethin-Farbstoffe. Cyclobutenderivate der Pyrrolreihe. Liebigs Ann Chem 699:153–167

    Article  CAS  Google Scholar 

  41. Sprenger HE, Ziegenbein W (1968) Cyclobutenediylium dyes. Angew Chem Int Ed Engl 7:530–535

    Article  CAS  Google Scholar 

  42. Law KY, Bailey FC (1992) Squaraine chemistry. Synthesis, characterization, and optical properties of a class of novel unsymmetrical squaraines: [4-(dymethylamino)phenyl](4′-methoxyphenyl)squaraine and its derivatives. J Org Chem 57:3278–3286

    Article  CAS  Google Scholar 

  43. Treibs A, Jacob K (1965) Von der Quadratsäure abgeleitete Cyclotrimethinfarbstoffe. Angew Chem 77:680–681

    Article  CAS  Google Scholar 

  44. Treibs A (1966) Über Pyrrolfarbstoffe. Chimia 20:329

    CAS  Google Scholar 

  45. Kim SH, Hwang SH, Kim JJ, Yoon CM, Keum SR (1998) Syntheses and properties of functional aminosquarylium dyes. Dyes Pigm 37:145–154

    Article  CAS  Google Scholar 

  46. Terpetschnig E, Szmacinski H, Lakowicz JR (1993) Synthesis, spectral properties and photostabilities of symmetrical and unsymmetrical squaraines; a new class of fluorophores with long-wavelength excitation and emission. Anal Chim Acta 282:633–641

    Article  CAS  Google Scholar 

  47. Nakazumi H, Natsukawa K, Nakai K, Isagawa K (1994) Synthesis and structure of new cationic squarylium dyes. Angew Chem Int Ed Engl 33:1001–1003

    Article  Google Scholar 

  48. Lin T, Peng BX (1997) Synthesis and spectral characteristics of some highly soluble squarylium cyanine dyes. Dyes Pigm 35:331–338

    Article  CAS  Google Scholar 

  49. Kim SH, Hwang SH (1997) Synthesis and photostability of functional squarylium dyes. Dyes Pigm 35:111–121

    Article  CAS  Google Scholar 

  50. Tatarets AL, Fedyunyaeva IA, Terpetschnig E, Patsenker LD (2005) Synthesis of novel squaraine dyes and their intermediates. Dyes Pigm 64:125–134

    Article  CAS  Google Scholar 

  51. Terpetschnig E, Lakowicz JR (1993) Synthesis and characterization of unsymmetrical squaraines: a new class of cyanine dyes. Dyes Pigm 21:227–229

    Article  CAS  Google Scholar 

  52. Hamilton AL, West RM, Cummins WJ, Briggs MSJ, Bruce IE (2000) US Patent 6140494

    Google Scholar 

  53. Chen H, Farahat MS, Law KY, Whitten DG (1996) Aggregation of surfactant squaraine dyes in aqueous solution and microheterogeneous media: correlation of aggregation behavior with molecular structure. J Am Chem Soc 118:2584–2594

    Article  CAS  Google Scholar 

  54. Deroover G, Missfeldt M, Simon L (2006) US Patent 6995262

    Google Scholar 

  55. Patsenker LD, Povrozin YA, Sidorov VI, Tatarets AL, Terpetschnig EA (2009) Fluorescence lifetime based hybridization assay using the new long-wavelength fluorescent label Seta-670. In: 24th International conference on photochemistry (ICP 2009). Book of Abstracts, p 430

    Google Scholar 

  56. Yagi S, Nakazumi H (2008) Squarylium dyes and related compounds. In: Gupta RR, Strekowski L (eds) Topics in heterocyclic chemistry, vol 14, Springer. Berlin, Heidelberg, pp 133–181

    Google Scholar 

  57. Ioffe VM, Gorbenko GP, Deligeorgiev T, Gadjev N, Vasilev A (2007) Fluorescence study of protein – lipid complexes with a new symmetric squarylium probe. Biophys Chem 128:75–86

    Article  CAS  Google Scholar 

  58. Volkova KD, Kovalska VB, Tatarets AL, Patsenker LD, Kryvorotenko DV, Yarmoluk SM (2007) Spectroscopic study of squaraines as protein-sensitive fluorescent dyes. Dyes Pigm 72:285–292

    Article  CAS  Google Scholar 

  59. Meadows F, Narayanan N, Patonay G (2000) Determination of protein–dye association by near infrared fluorescence-detected circular dichroism. Talanta 50:1149–1155

    Article  CAS  Google Scholar 

  60. Song B, Zhang Q, Ma WH, Peng XJ, Fu XM, Wang BS (2009) The synthesis and photostability of novel squarylium indocyanine dyes. Dyes Pigm 82:396–400

    Article  CAS  Google Scholar 

  61. Yagi S, Hyodo Y, Matsumoto S, Takahashi N, Kono H, Nakazumi H (2000) Synthesis of novel unsymmetrical squarylium dyes absorbing in the near-infrared region. J Chem Soc Perkin Trans: 599–603

    Google Scholar 

  62. Terpetschnig E, Szmacinski H, Ozinskas A, Lakowicz JR (1994) Synthesis of squaraine-N-hydroxysuccinimide esters and their biological application as long-wavelength fluorescent labels. Anal Biochem 217:197–204

    Article  CAS  Google Scholar 

  63. Sophianopoulos AJ, Lipowski J, Narayanan N, Patonay G (1997) Association of near-infrared dyes with bovine serum albumin. Appl Spectrosc 51:1511–1515

    Article  CAS  Google Scholar 

  64. Yan W, Sloat AL, Yagi S, Nakazumi H, Colyer CL (2006) Protein labeling with red squarylium dyes for analysis by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 27:1347–1354

    Article  CAS  Google Scholar 

  65. Nakazumi H, Colyer CL, Kaihara K, Yagi S, Hyodo Y (2003) Red luminescent squarylium dyes for noncovalent HSA labeling. Chem Lett 32:804–805

    Article  CAS  Google Scholar 

  66. Yan W, Colyer CL (2006) Investigating noncovalent squarylium dye–protein interactions by capillary electrophoresis–frontal analysis. J Chromatogr A 1135:115–121

    Article  CAS  Google Scholar 

  67. Sloat AL, Roper MG, Lin X, Ferrance JP, Landers JP, Colyer CL (2008) Protein determination by microchip capillary electrophoresis using an asymmetric squarylium dye: noncovalent labeling and nonequilibrium measurement of association constants. Electrophoresis 29:3446–3455

    Article  CAS  Google Scholar 

  68. Jyothish K, Avirah RR, Ramaiah D (2006) Synthesis of new cholesterol- and sugar-anchored squaraine dyes: further evidence of how electronic factors influence dye formation. Org Lett 8:111–114

    Article  CAS  Google Scholar 

  69. Jiao GS, Loudet A, Lee HB, Kalinin S, Johansson LBÅ, Burgess K (2003) Syntheses and spectroscopic properties of energy transfer systems based on squaraines. Tetrahedron 59:3109–3116

    Article  CAS  Google Scholar 

  70. Yagi S, Ohta T, Akagi N, Nakazumi H (2008) The synthesis and optical properties of bis-squarylium dyes bearing arene and thiophene spacers. Dyes Pigm 77:525–536

    Article  CAS  Google Scholar 

  71. Arun KT, Ramaiah D (2005) Near-infrared fluorescent probes: synthesis and spectroscopic investigations of a few amphiphilic squaraine dyes. J Phys Chem A 109:5571–5578

    Article  CAS  Google Scholar 

  72. Jisha VS, Arun KT, Hariharan M, Ramaiah D (2006) Site-selective binding and dual mode recognition of serum albumin by a squaraine dye. J Am Chem Soc 128:6024–6025

    Article  CAS  Google Scholar 

  73. Suzuki Y, Yokoyama K (2007) A protein-responsive chromophore based on squaraine and its application to visual protein detection on a gel for SDS-PAGE. Angew Chem Int Ed 46:4097–4099

    Article  CAS  Google Scholar 

  74. Basheer MC, Santhosh U, Alex S, Thomas KG, Suresh CH, Das S (2007) Design and synthesis of squaraine based near infrared fluorescent probes. Tetrahedron 63:1617–1623

    Article  CAS  Google Scholar 

  75. Kim SH, Kim JH, Cui JZ, Gal YS, Jin SH, Koh K (2002) Absorption spectra, aggregation and photofading behaviour of near-infrared absorbing squarylium dyes containing perimidine moiety. Dyes Pigm 55:1–7

    Article  CAS  Google Scholar 

  76. Umezawa K, Citterio D, Suzuki K (2007) A squaraine-based near-infrared dye with bright fluorescence and solvatochromic property. Chem Lett 36:1424–1425

    Article  CAS  Google Scholar 

  77. Binda M, Agostinelli T, Caironi M, Natali D, Sampietro M, Beverina L, Ruffo R, Silvestri F (2009) Fast and air stable near-infrared organic detector based on squaraine dyes. Org Electron 10:1314–1319

    Article  CAS  Google Scholar 

  78. Ajayaghosh A (2005) Chemistry of squaraine-derived materials: near-IR dyes, low band gap systems, and cation sensors. Acc Chem Res 38:449–459

    Article  CAS  Google Scholar 

  79. Basheer MC, Alex S, Thomas KG, Suresh CH, Das S (2006) A squaraine-based chemosensor for Hg2+ and Pb2+. Tetrahedron 62:605–610

    Article  CAS  Google Scholar 

  80. Yagi S, Fujie Y, Hyodo Y, Nakazumi H (2002) Synthesis, structure, and complexation properties with transition metal cations of a novel methine-bridged bisquarylium dye. Dyes Pigm 52:245–252

    Article  CAS  Google Scholar 

  81. Oguz U, Akkaya EU (1997) One-pot synthesis of a red-fluorescent chemosensor from an azacrown, phloroglucinol and squaric acid: a simple in-solution construction of a functional molecular device. Tetrahedron Lett 38:4509–4512

    Article  CAS  Google Scholar 

  82. Oguz U, Akkaya EU (1998) A squaraine-based sodium selective fluorescent chemosensor. Tetrahedron Lett 39:5857–5860

    Article  CAS  Google Scholar 

  83. Ertekin K, Tepe M, Yenigü B, Akkaya EU, Henden E (2002) Fiber optic sodium and potassium sensing by using a newly synthesized squaraine dye in PVC matrix. Talanta 58:719–727

    Article  CAS  Google Scholar 

  84. Chandrasekaran Y, Dutta G, Kanth RB, Patil S (2009) Tetrahydroquinoxaline based squaraines: Synthesis and photophysical properties. Dyes Pigm 83:162–167

    Article  CAS  Google Scholar 

  85. Akkaya EU, Turkyilmaz S (1997) A squaraine-based near IR fluorescent chemosensor for calcium. Tetrahedron Lett 38:4513–4516

    Article  CAS  Google Scholar 

  86. Dilek G, Akkaya EU (2000) Novel squaraine signalling Zn(II) ions: three-state fluorescence response to a single input. Tetrahedron Lett 41:3721–3724

    Article  CAS  Google Scholar 

  87. Ajayaghosh A, Chithra P, Varghese R, Divya KP (2008) Controlled self-assembly of squaraines to 1D supramolecular architectures with high molar absorptivity. Chem Commun: 969–971

    Google Scholar 

  88. Chithra P, Varghese R, Divya KP, Ajayaghosh A (2008) Solvent-induced aggregation and cation-controlled self-assembly of tripodal squaraine dyes: optical, chiroptical and morphological properties. Chem Asian J 3:1365–1373

    Article  CAS  Google Scholar 

  89. Kukrer B, Akkaya EU (1999) Red to near IR fluorescent signalling of carbohydrates. Tetrahedron Lett 40:9125–9128

    Article  CAS  Google Scholar 

  90. Isgor YG, Akkaya EU (1997) Chemosensing in deep red: a squaraine-based fluorescent chemosensor for pH. Tetrahedron Lett 38:7417–7420

    Article  CAS  Google Scholar 

  91. Ros-Lis JV, García B, Jiménez D, Martínez-Máñez R, Sancenón F, Soto J, Gonzalvo F, Valldecabres MC (2004) Squaraines as fluoro-chromogenic probes for thiol-containing compounds and their application to the detection of biorelevant thiols. J Am Chem Soc 126:4064–4065

    Article  CAS  Google Scholar 

  92. Sreejith S, Divya KP, Ajayaghosh A (2008) A near-infrared squaraine dye as a latent ratiometric fluorophore for the detection of aminothiol content in blood plasma. Angew Chem 120:8001–8005

    Article  Google Scholar 

  93. Houk RJT, Wallace KJ, Hewage HS, Anslyn EV (2008) A colorimetric chemodosimeter for Pd(II): a method for detecting residual palladium in cross-coupling reactions. Tetrahedron 64:8271–8278

    Article  CAS  Google Scholar 

  94. Oswald B, Patsenker L, Duschl J, Szmacinski H, Wolfbeis OS, Terpetschnig E (1999) Synthesis, spectral properties, and detection limits of reactive squaraine dyes, a new class of diode laser compatible fluorescent protein labels. Bioconjugate Chem 10:925–931

    Article  CAS  Google Scholar 

  95. Oswald B, Lehmann F, Simon L, Terpetschnig E, Wolfbeis OS (2000) Red laser-induced fluorescence energy transfer in an immunosystem. Anal Biochem 280:272–277

    Article  CAS  Google Scholar 

  96. Oswald B, Gruber M, Böhmer M, Lehmann F, Probst M, Wolfbeis OS (2001) Novel diode laser-compatible fluorophores and their application to single molecule detection, protein labeling and fluorescence resonance energy transfer immunoassay. Photochem Photobiol 74:237–245

    Article  CAS  Google Scholar 

  97. Terpetschnig EA, Tatarets A, Galkina O, Fedyunyayeva I, Patsenker L (2008) US Patent 7411068

    Google Scholar 

  98. Terpetschnig EA, Patsenker L, Tatarets A (2007) US Patent 7250517

    Google Scholar 

  99. Umezawa K, Citterio D, Suzuki K (2008) Water-soluble NIR fluorescent probes based on squaraine and their application for protein labeling. Anal Sci 24:213–217

    Article  CAS  Google Scholar 

  100. Pham W, Weissleder R, Tung CH (2002) An azulene dimer as a near-infrared quencher. Angew Chem Int Ed Engl 41:3659–3662

    Article  CAS  Google Scholar 

  101. Pham W, Weissleder R, Tung CH (2003) A practical approach for the preparation of monofunctional azulenyl squaraine dye. Tetrahedron Lett 44:3975–3978

    Article  CAS  Google Scholar 

  102. Thomas J, Sherman DB, Amiss TJ, Andaluz SA, Pitner JB (2007) Synthesis and biosensor performance of a near-IR thiol-reactive fluorophore based on benzothiazolium squaraine. Bioconjugate Chem 18:1841–1846

    Article  CAS  Google Scholar 

  103. Kim SH, Han SK, Park SH, Park LS (1998) A new dithiosquarylium dye for use as an electron transport material in an organic electroluminescent device having poly(p-phenylene vinylene) as an emitter. Dyes Pigm 38:49–56

    Article  CAS  Google Scholar 

  104. Terpetschnig EA (2007) EP Patent 1849837

    Google Scholar 

  105. Renard BL, Aubert Y, Asseline U (2009) Fluorinated squaraine as near-IR label with improved properties for the labeling of oligonucleotides. Tetrahedron Lett 50:1897–1901

    Article  CAS  Google Scholar 

  106. Griffiths J, Park S (2002) Facile preparative redox chemistry of bis(4-dialkylaminophenyl)squaraine dyes. Tetrahedron Lett 43:7669–7671

    Article  CAS  Google Scholar 

  107. Nizomov N, Ismailov ZF, Nizamov SN, Salakhitdinova MK, Tatarets AL, Patsenker LD, Khodjayev G (2006) Spectral-luminescent study of interaction of squaraine dyes with biological substances. J Mol Struct 788:36–42

    Article  CAS  Google Scholar 

  108. Patonay G, Salon J, Sowell J, Strekowski L (2004) Noncovalent labeling of biomolecules with red and near-infrared dyes. Molecules 9:40–49

    Article  CAS  Google Scholar 

  109. Ioffe VM, Gorbenko GP, Tatarets AL, Patsenker LD, Terpechnig EA (2006) Examining protein-lipid interactions in model systems with a new squarylium fluorescent dye. J Fluoresc 16:547–554

    Article  CAS  Google Scholar 

  110. Ioffe VM, Gorbenko GP, Domanov YA, Tatarets AL, Patsenker LD, Terpetsching EA, Dyubko TS (2006) A new fluorescent squaraine probe for the measurement of membrane polarity. J Fluoresc 16:47–52

    Article  CAS  Google Scholar 

  111. Hiroo T, Masaki O (2000) JP Patent 2000285978

    Google Scholar 

  112. Reis LV, Serrano JP, Almeida P, Santos PF (2009) The synthesis and characterization of novel, aza-substituted squarylium cyanine dyes. Dyes Pigm 81:197–202

    Article  CAS  Google Scholar 

  113. Luchowski R, Matveeva EG, Gryczynski I, Terpetschnig EA, Patsenker L, Laczko G, Borejdo J, Gryczynski Z (2008) Single molecule studies of multiple-fluorophore labeled antibodies. Effect of homo-FRET on the number of photons available before photobleaching. Curr Pharm Biotechnol 9:411–420

    Article  CAS  Google Scholar 

  114. Matveeva EG, Terpetschnig EA, Stevens M, Patsenker L, Kolosova OS, Gryczynski Z, Gryczynski I (2009) Near-infrared squaraine dyes for fluorescence enhanced surface assay. Dyes Pigm 80:41–46

    Article  CAS  Google Scholar 

  115. http://www.setabiomedicals.com/products/biomedical/flt-labels.htm

  116. Cooper ME, Gregory S, Adie E, Kalinka S (2002) pH-Sensitive cyanine dyes for biological applications. J Fluoresc 12:425–429

    Article  CAS  Google Scholar 

  117. Adie EJ, Kalinka S, Smith L, Francis MJ, Marenghi A, Cooper ME, Briggs M, Michael P, Milligan G, Game S (2002) A pH-sensitive fluor, CypHer 5, used to monitor agonist-induced G protein-coupled receptor internalization in live cells. BioTechniques 33:1152–1157

    CAS  Google Scholar 

  118. Cooper ME, Gregory SJ, Adie E, Kalinka S, Burns DD (2001) pH Sensitive cyanine dyes for biological applications. 7th Conference on Methods and Applications of Fluorescence: Spectroscopy, Imaging, and Probes, Amsterdam. http://www4.gelifesciences.com/aptrix/upp00919.nsf/Content /A29DEB85A10D6C84C1257628001CEE23/$file/MAFS_pH_dye.pdf

  119. Povrozin YA, Markova LI, Tatarets AL, Sidorov VI, Terpetschnig EA, Patsenker LD (2009) Near-infrared, dual-ratiometric fluorescent label for measurement of pH. Anal Biochem 390:136–140

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid D. Patsenker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Patsenker, L.D., Tatarets, A.L., Terpetschnig, E.A. (2010). Long-Wavelength Probes and Labels Based on Cyanines and Squaraines. In: Demchenko, A. (eds) Advanced Fluorescence Reporters in Chemistry and Biology I. Springer Series on Fluorescence, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04702-2_3

Download citation

Publish with us

Policies and ethics