Skip to main content

Comparative Analysis of Fluorescence Reporter Signals Based on Intensity, Anisotropy, Time-Resolution, and Wavelength-Ratiometry

  • Chapter
  • First Online:

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 8))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Demchenko AP (2009) Introduction to fluorescence sensing. Springer, Amsterdam

    Book  Google Scholar 

  2. McFarland SA, Finney NS (2001) Fluorescent chemosensors based on conformational restriction of a biaryl fluorophore. J Am Chem Soc 123:1260–1261

    Article  CAS  Google Scholar 

  3. de Silva AP, Fox DB, Moody TS, Weir SM (2001) The development of molecular fluorescent switches. Trends Biotechnol 19:29–34

    Article  Google Scholar 

  4. Marme N, Knemeyer JP, Sauer M, Wolfrum J (2003) Inter- and intramolecular fluorescence quenching of organic dyes by tryptophan. Bioconjug Chem 14:1133–1139

    Article  CAS  Google Scholar 

  5. Lebold TP, Yeow EK, Steer RP (2004) Fluorescence quenching of the S1 and S2 states of zinc meso-tetrakis(4-sulfonatophenyl)porphyrin by halide ions. Photochem Photobiol Sci 3:160–166

    Article  CAS  Google Scholar 

  6. Chen YG, Zhao D, He ZK, Ai XP (2007) Fluorescence quenching of water-soluble conjugated polymer by metal cations and its application in sensor. Spectrochim Acta A Mol Biomol Spectrosc 66:448–452

    Article  Google Scholar 

  7. Ellison EH, Moodley D, Hime J (2006) Fluorescence study of arene probe microenvironment in the intraparticle void volume of zeolites interfaced with bathing polar solvents. J Phys Chem B 110:4772–4781

    Article  CAS  Google Scholar 

  8. de Silva AP, Gunaratne HQN, Gunnaugsson T, Huxley AJM, McRoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  Google Scholar 

  9. Demchenko AP (2005) Optimization of fluorescence response in the design of molecular biosensors. Anal Biochem 343:1–22

    Article  CAS  Google Scholar 

  10. Descalzo AB, Zhu S, Fischer T, Rurack K (2010) Optimization of the coupling of target recognition and signal generation. In: Demchenko AP (ed) Advanced Fluorescence Reporters in Chemistry and Biology II. Springer Ser Fluoresc 9:41–105

    Google Scholar 

  11. Vogt RFJ, Marti GE, Zenger V (2008) Quantitative fluorescence calibration: a tool for assessing the quality of data obtained by fluorescence measurements. In: Resch-Genger U (ed) Standardization and quality assurance in fluorescence measurements I: Springer Ser Fluoresc 5:3–31

    Chapter  Google Scholar 

  12. Demchenko AP (2005) The problem of self-calibration of fluorescence signal in microscale sensor systems. Lab Chip 5:1210–1223

    Article  CAS  Google Scholar 

  13. Schaferling M, Duerkop A (2008) Intrinsically referenced fluorimetric sensing and detection schemes: methods, advantages and applications. In: Resch-Genger U (ed) Standardization and quality assurance in fluorescence measurements I: Springer Ser Fluoresc 5:373–414

    Chapter  Google Scholar 

  14. Jameson DM, Croney JC (2003) Fluorescence polarization: past, present and future. Comb Chem High Throughput Screen 6:167–173

    Article  CAS  Google Scholar 

  15. Guo XQ, Castellano FN, Li L, Lakowicz JR (1998) Use of a long lifetime Re(I) complex in fluorescence polarization immunoassays of high-molecular weight analytes. Anal Chem 70:632–637

    Article  CAS  Google Scholar 

  16. Lakowicz JR (2007) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Google Scholar 

  17. Maliwal BP, Gryczynski Z, Lakowicz JR (2001) Long-wavelength long-lifetime luminophores. Anal Chem 73:4277–4285

    Article  CAS  Google Scholar 

  18. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer Academic, New York

    Book  Google Scholar 

  19. Liebsch G, Klimant I, Krause C, Wolfbeis OS (2001) Fluorescent imaging of pH with optical sensors using time domain dual lifetime referencing. Anal Chem 73:4354–4363

    Article  CAS  Google Scholar 

  20. Borisov SM, Neurauter G, Schroeder C, Klimant I, Wolfbeis OS (2006) Modified dual lifetime referencing method for simultaneous optical determination and sensing of two analytes. Appl Spectrosc 60:1167–1173

    Article  CAS  Google Scholar 

  21. Yang CJ, Jockusch S, Vicens M, Turro NJ, Tan W (2005) Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proc Natl Acad Sci USA 102:17278–17283

    Article  CAS  Google Scholar 

  22. Yang RH, Chan WH, Lee AWM, Xia PF, Zhang HK, Li KA (2003) A ratiometric fluorescent sensor for Ag-1 with high selectivity and sensitivity. J Am Chem Soc 125:2884–2885

    Article  CAS  Google Scholar 

  23. Clegg RM (1996) Fluorescence resonance energy transfer. In: Wang XF, Herman B (eds) Fluorescence imaging spectroscopy and microscopy. John Wiley, New York, pp 179–252

    Google Scholar 

  24. Selvin PR (2000) The renaissance of fluorescence resonance energy transfer. Nat Struct Biol 7:730–734

    Article  CAS  Google Scholar 

  25. Tahtaoui C, Guillier F, Klotz P, Galzi JL, Hibert M, Ilien B (2005) On the use of nonfluorescent dye labeled ligands in FRET-based receptor binding studies. J Med Chem 48:7847–7859

    Article  CAS  Google Scholar 

  26. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308

    Article  CAS  Google Scholar 

  27. Hildebrandt N, Charbonniere LJ, Lohmannsroben HG (2007) Time-resolved analysis of a highly sensitive forster resonance energy transfer immunoassay using terbium complexes as donors and quantum dots as acceptors. J Biomed Biotechnol 2007:79169

    Article  Google Scholar 

  28. Wu PG, Brand L (1994) Resonance energy-transfer - methods and applications. Anal Biochem 218:1–13

    Article  CAS  Google Scholar 

  29. Petitjean A, Lehn JM (2007) Conformational switching of the pyridine-pyrimidine-pyridine scaffold for ion-controlled FRET. Inorganica Chim Acta 360:849–856

    Article  CAS  Google Scholar 

  30. Gershkovich AA, Kholodovych VV (1996) Fluorogenic substrates for proteases based on intramolecular fluorescence energy transfer (IFETS). J Biochem Biophys Methods 33:135–162

    Article  CAS  Google Scholar 

  31. Xu H, Wu HP, Huang F, Song SP, Li WX, Cao Y, Fan CH (2005) Magnetically assisted DNA assays: high selectivity using conjugated polymers for amplified fluorescent transduction. Nucleic Acids Res 33:e83

    Article  Google Scholar 

  32. Johansson MK, Cook RM (2003) Intramolecular dimers: a new design strategy for fluorescence-quenched probes. Chemistry 9:3466–3471

    Article  CAS  Google Scholar 

  33. Tramier M, Coppey-Moisan M (2008) Fluorescence anisotropy imaging microscopy for homo-FRET in living cells. Methods Cell Biol 85:395–414

    Article  CAS  Google Scholar 

  34. Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395

    Article  CAS  Google Scholar 

  35. Takakusa H, Kikuchi K, Urano Y, Kojima H, Nagano T (2003) A novel design method of ratiometric fluorescent probes based on fluorescence resonance energy transfer switching by spectral overlap integral. Chemistry 9:1479–1485

    Article  CAS  Google Scholar 

  36. Giordano L, Jovin TM, Irie M, Jares-Erijman EA (2002) Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). J Am Chem Soc 124:7481–7489

    Article  CAS  Google Scholar 

  37. Selvin PR (2002) Principles and biophysical applications of lanthanide-based probes. Annu Rev Biophys Biomol Struct 31:275–302

    Article  CAS  Google Scholar 

  38. Algar WR, Krull UJ (2008) Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal Bioanal Chem 391:1609–1618

    Article  CAS  Google Scholar 

  39. Medintz IL, Mattoussi H (2009) Quantum dot-based resonance energy transfer and its growing application in biology. Phys Chem Chem Phys 11:17–45

    Article  CAS  Google Scholar 

  40. Resch-Genger U, Grabolle M, Nitschke R, Nann T (2010) Nanocrystals and nanoparticles vs. molecular fluorescent labels as reporters for bioanalysis and the life sciences. A critical comparison. In: Demchenko AP (ed) Advanced Fluorescence Reporters in Chemistry and Biology II. Springer Ser Fluoresc 9:3–40

    Google Scholar 

  41. Charbonniere LJ, Hildebrandt N, Ziessel RF, Lohmannsroben HG (2006) Lanthanides to quantum dots resonance energy transfer in time-resolved fluoro-immunoassays and luminescence microscopy. J Am Chem Soc 128:12800–12809

    Article  CAS  Google Scholar 

  42. Demchenko AP (2005) The future of fluorescence sensor arrays. Trends Biotechnol 23:456–460

    Article  CAS  Google Scholar 

  43. Clarke RJ, Zouni A, Holzwarth JF (1995) Voltage sensitivity of the fluorescent probe RH421 in a model membrane system. Biophys J 68:1406–1415

    Article  CAS  Google Scholar 

  44. Callis PR (2010) Electrochromism and solvatochromism in fluorescence response of organic dyes. A nanoscopic view. In: Demchenko AP (ed) Advanced Fluorescence Reporters in Chemistry and Biology I. Springer Ser Fluoresc 8:309–330

    Google Scholar 

  45. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  Google Scholar 

  46. Chang CJ, Javorski J, Nolan EM, Shaeng M, Lippard SJ (2004) A tautomeric zinc sensor for ratiometric fluorescence imaging: application to nitric oxide-release of intracellular zinc. Proc Natl Acad Sci USA 101:1129–1134

    Article  CAS  Google Scholar 

  47. Arnaut LG, Formosinho SJ (1993) Excited-state proton-transfer reactions. 1. Fundamentals and intermolecular reactions. J Photochem Photobiol A Chem 75:1–20

    Article  CAS  Google Scholar 

  48. Davenport LD, Knutson JR, Brand L (1986) Excited-state proton transfer of equilenin and dihydro equilenin: inreractions with bilayer vesicles. Biochemistry 25:1186–1195

    Article  CAS  Google Scholar 

  49. Formosinho SJ, Arnaut LG (1993) Excited-state proton-transfer reactions. 2. Intramolecular reactions. J Photochem Photobiol A Chem 75:21–48

    Article  CAS  Google Scholar 

  50. Hsieh C-C, Ho M-L, Chou P-T (2010) Organic dyes with excited-state transforma-tions (electron, charge and proton transfers). In: Demchenko AP (ed) Advanced Fluorescence Reporters in Chemistry and Biology I. Springer Ser Fluoresc 8:225–266

    Google Scholar 

  51. Shynkar VV, Klymchenko AS, Piemont E, Demchenko AP, Mely Y (2004) Dynamics of intermolecular hydrogen bonds in the excited states of 4′-dialkylamino-3-hydroxyflavones. On the pathway to an ideal fluorescent hydrogen bonding sensor. J Phys Chem A 108:8151–8159

    Article  CAS  Google Scholar 

  52. Strandjord AJG, Barbara PF (1985) Proton-transfer kinetics of 3-Hydroxyflavone – solvent effects. J Phys Chem 89:2355–2361

    Article  CAS  Google Scholar 

  53. Yushchenko DA, Shvadchak VV, Bilokin MD, Klymchenko AS, Duportail G, Mely Y, Pivovarenko VG (2006) Modulation of dual fluorescence in a 3-hydroxyquinolone dye by perturbation of its intramolecular proton transfer with solvent polarity and basicity. Photochem Photobiol Sci 5:1038–1044

    Article  CAS  Google Scholar 

  54. Tomin VI, Oncul S, Smolarczyk G, Demchenko AP (2007) Dynamic quenching as a simple test for the mechanism of excited-state reaction. Chem Phys 342:126–134

    Article  CAS  Google Scholar 

  55. Altschuh D, Oncul S, Demchenko AP (2006) Fluorescence sensing of intermolecular interactions and development of direct molecular biosensors. J Mol Recognit 19:459–477

    Article  CAS  Google Scholar 

  56. Oncul S, Demchenko AP (2006) The effects of thermal quenching on the excited-state intramolecular proton transfer reaction in 3-hydroxyflavones. Spectrochim Acta A Mol Biomol Spectrosc 65:179–183

    Article  Google Scholar 

  57. Valeur B (2002) Molecular fluorescence. Wiley VCH, Weinheim

    Google Scholar 

  58. Tomin VI (2010) Physical principles behind spectroscopic response of organic fluorophores to intermolecular interactions. In: Demchenko AP (ed) Advanced Fluorescence Reporters in Chemistry and Biology I. Springer Ser Fluoresc 8:189–224

    Google Scholar 

  59. Vazquez ME, Blanco JB, Imperiali B (2005) Photophysics and biological applications of the environment-sensitive fluorophore 6-N, N-Dimethylamino-2, 3-naphthalimide. J Am Chem Soc 127:1300–1306

    Article  CAS  Google Scholar 

  60. Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural changes accompanying intramolecular electron transfer: Focus on twisted intramolecular charge-transfer states and structures. Chem Rev 103:3899–4031

    Article  Google Scholar 

  61. Klymchenko AS, Demchenko AP (2003) Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer. Phys Chem Chem Phys 5:461–468

    Article  CAS  Google Scholar 

  62. Caarls W, Celej MS, Demchenko AP, Jovin TM (2009) Characterization of coupled ground state and excited state equilibria by fluorescence spectral deconvolution. J Fluorescence 20:181–190

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander P. Demchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demchenko, A.P. (2010). Comparative Analysis of Fluorescence Reporter Signals Based on Intensity, Anisotropy, Time-Resolution, and Wavelength-Ratiometry. In: Demchenko, A. (eds) Advanced Fluorescence Reporters in Chemistry and Biology I. Springer Series on Fluorescence, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04702-2_1

Download citation

Publish with us

Policies and ethics