Skip to main content

Decorrelation and Distinctiveness Provide with Human-Like Saliency

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5807))

Abstract

In this work, we show the capability of a new model of saliency, of reproducing remarkable psychophysical results. The model presents low computational complexity compared to other models of the state of the art. It is based in biologically plausible mechanisms: the decorrelation and the distinctiveness of local responses. Decorrelation of scales is obtained from principal component analysis of multiscale low level features. Distinctiveness is measured through the Hotelling’s T2 statistic. The model is conceived to be used in a machine vision system, in which attention would contribute to enhance performance together with other visual functions. Experiments demonstrate the consistency with a wide variety of psychophysical phenomena, that are referenced in the visual attention modeling literature, with results that outperform other state of the art models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tsotsos, J.K.: Computational foundations for attentive Processes. In: Itti, L., Rees, G., Tsotsos, J.K. (eds.) Neurobiology of Attention, pp. 3–7. Elsevier Academia Press, Amsterdam (2005)

    Chapter  Google Scholar 

  2. Nothdurft, H.C.: Salience of Feature Contrast. In: Itti, L., Rees, G., Tsotsos, J.K. (eds.) Neurobiology of Attention, pp. 233–239. Elsevier Academia Press, Amsterdam (2005)

    Chapter  Google Scholar 

  3. Zetzsche, C.: Natural Scene Statistics and Salient Visual Features. In: Itti, L., Rees, G., Tsotsos, J.K. (eds.) Neurobiology of Attention, pp. 226–232. Elsevier Academia Press, Amsterdam (2005)

    Chapter  Google Scholar 

  4. Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research 40, 1489–1506 (2000)

    Article  Google Scholar 

  5. Le Meur, O., Le Callet, P., Barba, D., Thoreau, D.: A coherent computational approach to model bottom-up visual attention. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 802–817 (2006)

    Article  Google Scholar 

  6. Bruce, N., Tsotsos, J.K.: Saliency Based on Information Maximization. Advances in Neural Information Processing Systems 18, 155–162 (2006)

    Google Scholar 

  7. Bruce, N., Tsotsos, J.K.: Saliency, attention, and visual search: An information theoretic approach. Journal of Vision 9(3), 1–24 (2009)

    Article  Google Scholar 

  8. Gao, D., Mahadevan, V., Vasconcelos, N.: On the plausibility of the discriminant center-surround hypothesis for visual saliency. Journal of Vision 8, 13 (2008)

    Article  Google Scholar 

  9. Gao, D., Mahadevan, V., Vasconcelos, N.: The discriminant center-surround hypothesis for bottom-up saliency. In: Proceedings of the Neural Information Processing Systems (NIPS) Conference, Vancouver, Canada (2007)

    Google Scholar 

  10. Harel, J., Koch, C., Perona, P.: Graph-Based Visual Saliency. Advances in Neural Information Processing Systems 19, 545–552 (2007)

    Google Scholar 

  11. Garcia-Diaz, A., Fdez-Vidal, X.R., Pardo, X.M., Dosil, R.: Local energy variability as a generic measure of bottom-up salience. In: Yin, P.-Y. (ed.) Pattern Recognition Techniques, Technology and Applications, pp. 1–24. In-Teh, Vienna (2008)

    Google Scholar 

  12. Olshausen, B.A., Field, D.J.: How Close Are We to Understanding V1? Neural Computation 17, 1665–1699 (2005)

    Article  MATH  Google Scholar 

  13. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  14. Wolfe, J.M., Horowitz, T.S.: What attributes guide the deployment of visual attention and how do they do it? Nature Reviews. Neuroscience 5(6), 495–501 (2004)

    Article  Google Scholar 

  15. Field, D.J.: Relations Between the Statistics of Natural Images and the Response Properties of Cortical Cells. Journal of the Optical Society of America A 4(12), 2379–2394 (1987)

    Article  Google Scholar 

  16. Kovesi, P.: Invariant Measures of Image Features from Phase Information. Ph.D. Thesis, The University or Western Australia (1996)

    Google Scholar 

  17. Morrone, M.C., Burr, D.C.: Feature Detection in Human Vision: A Phase-Dependent Energy Model. Proceedings of the Royal Society of London B 235, 221–245 (1988)

    Article  Google Scholar 

  18. Vinje, W.E., Gallant, J.L.: Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287, 1273–1276 (2000)

    Article  Google Scholar 

  19. Sharma, A., Paliwal, K.K.: Fast principal component analysis using fixed-point algorithm. Pattern Recognition Letters 28, 1151–1155 (2007)

    Article  Google Scholar 

  20. Nothdurft, H.C.: The conspicuousness of orientation and motion contrast. Spatial Vision 7 (1993)

    Google Scholar 

  21. Treisman, A., Gormican, S.: Feature analysis in early vision: Evidence from search asymmetries. Psychological Review 95, 15–48 (1988)

    Article  Google Scholar 

  22. Rosenholtz, R., Nagy, A.L., Bell, N.R.: The effect of background color on asymmetries in color search. Journal of Vision 4, 224–240 (2004)

    Article  Google Scholar 

  23. Tatler, B.W., Baddeley, R.J., Gilchrist, I.D.: Visual correlates of fixation selection: Effects of scale and time. Vision Research 45, 643–659 (2005)

    Article  Google Scholar 

  24. Cortes, C., Mohri, M.: Confidence intervals for the area under the ROC curve. In: Advances in Neural Information Processing Systems 17: Proceedings of The 2004 Conference, p. 305. MIT Press, Cambridge (2005)

    Google Scholar 

  25. Fawcett, T.: An introduction to ROC analysis. Pattern recognition letters 27, 861–874 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garcia-Diaz, A., Fdez-Vidal, X.R., Pardo, X.M., Dosil, R. (2009). Decorrelation and Distinctiveness Provide with Human-Like Saliency. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2009. Lecture Notes in Computer Science, vol 5807. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04697-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04697-1_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04696-4

  • Online ISBN: 978-3-642-04697-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics