Skip to main content

Image Categorization Using ESFS: A New Embedded Feature Selection Method Based on SFS

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5807))

Abstract

Feature subset selection is an important subject when training classifiers in Machine Learning (ML) problems. Too many input features in a ML problem may lead to the so-called “curse of dimensionality”, which describes the fact that the complexity of the classifier parameters adjustment during training increases exponentially with the number of features. Thus, ML algorithms are known to suffer from important decrease of the prediction accuracy when faced with many features that are not necessary. In this paper, we introduce a novel embedded feature selection method, called ESFS, which is inspired from the wrapper method SFS since it relies on the simple principle to add incrementally most relevant features. Its originality concerns the use of mass functions from the evidence theory that allows to merge elegantly the information carried by features, in an embedded way, and so leading to a lower computational cost than original SFS. This approach has successfully been applied to the domain of image categorization and has shown its effectiveness through the comparison with other feature selection methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hall, M.A., Smith, L.A.: Feature Subset Selection: A Correlation Based Filter Approach. In: International Conference on Neural Information Processing and Intelligent Information Systems, pp. 855–858. Springer, Heidelberg (1997)

    Google Scholar 

  2. Kohavi, R., John, G.H.: Wrappers for Feature Subset Selection. Artificial Intelligence 97(1-2), 273–324 (1997); Special issue on relevance

    Article  MATH  Google Scholar 

  3. Guyon, I., Elisseff, A.: An Introduction to Variable and Feature Selection. Journal of Machine Learning Research 3, 1157–1182 (2003)

    MATH  Google Scholar 

  4. Blum, A., Langley, P.: Selection of Relevant Features and Examples in Machine Learning. Artificial Intelligence 97, 245–271 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kojadinovic, I., Wottka, T.: Comparison Between a Filter and a Wrapper Approach to Variable Subset Selection in Regression Problems. In: European Symposium on Intelligent Techniques, Aachen, Germany, September 14-15 (2000)

    Google Scholar 

  6. Arauzo-Azofra, A., Benitez, J.M., Castro, J.L.: A Feature Set Measure Based on Relief. In: Proceedings of the 5th International Conference on Recent Advances in Soft Computing, pp. 104–109. Nottingham (2004)

    Google Scholar 

  7. Almuallim, H., Dietterich, T.G.: Learning with Many Irrelevant Features. In: Proceedings of the 9th National Conference on Artificial Intelligence, pp. 547–552. AAAI Press, San Jose (1991)

    Google Scholar 

  8. Mao, K.Z.: Orthogonal Forward Selection and Backward Elimination Algorithms for Feature Subset Selection. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 34(1), 629–634 (2004)

    Article  Google Scholar 

  9. Yang, J.H., Honavar, V.: Feature Subset Selection Using a Genetic Algorithm. IEEE Intelligent Systems 13(2), 44–49 (1998)

    Article  Google Scholar 

  10. Huang, J.J., Cai, Y.Z., Xu, X.M.: A Hybrid Genetic Algorithm for Feature Selection Wrapper Based on Mutual Information. Pattern Recognition Letters 28(13), 1825–1844 (2007)

    Article  Google Scholar 

  11. Whitney, A.W.: A Direct Method of Nonparametric Measurement Selection. IEEE Transactions on Computers 20(9), 1100–1103 (1971)

    Article  MATH  Google Scholar 

  12. Pudil, P., Novovičová, J., Kittler, J.: Floating Search Methods in Feature Selection. Pattern Recognition Letters 15(11), 1119–1125 (1994)

    Article  Google Scholar 

  13. Somol, P., Pudil, P.: Oscillating Search Algorithms for Feature Selection. In: Proceedings of the 15th International Conference on Pattern Recognition, pp. 406–409 (2000)

    Google Scholar 

  14. Spence, C., Sajda, P.: The Role of Feature Selection in Building Pattern Recognizers for Computer-aided Diagnosis. In: Proceedings of SPIE. Medical Imaging 1998: Image Processing, vol. 3338, pp. 1434–1441 (1998)

    Google Scholar 

  15. Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1(1), 81–106 (1986)

    Google Scholar 

  16. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Series in Machine Learning (1993)

    Google Scholar 

  17. Quinlan, J.R.: Improved Use of Continuous Attributes in C4.5. Journal of Artificial Intelligence Research 4, 77–90 (1996)

    MATH  Google Scholar 

  18. Breiman, L., Friedman, J.H., Olshen, R., Stone, C.J.: Classification and Regression Trees. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  19. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning 46(1-3), 389–422 (2002)

    Article  MATH  Google Scholar 

  20. Rakotomamonjy, A.: Variable Selection Using SVM-based Criteria. Journal of Machine Learning Research 3, 1357–1370 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Dempster, A.P.: A Generalization of Bayesian Inference. J. Royal Statistical Soc. Series B 30 (1968)

    Google Scholar 

  22. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  23. Narendra, P.M., Fukunaga, K.: A Branch and Bound Algorithm for Feature Selection. IEEE Transactions on Computers 26(9), 917–922 (1977)

    Article  MATH  Google Scholar 

  24. Rakotomalala, R.: TANAGRA: A free software for the education and the research. In: Actes de EGC 2005, RNTI-E-3, vol. 2, pp. 697–702 (2005)

    Google Scholar 

  25. Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture Libraries. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(9), 947–963 (2001)

    Article  Google Scholar 

  26. Jolliffe, I.T.: Principal Component Analysis. Springer series in statistics (2002)

    Google Scholar 

  27. Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North Holland, New York (1983)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fu, H., Xiao, Z., Dellandréa, E., Dou, W., Chen, L. (2009). Image Categorization Using ESFS: A New Embedded Feature Selection Method Based on SFS. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2009. Lecture Notes in Computer Science, vol 5807. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04697-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04697-1_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04696-4

  • Online ISBN: 978-3-642-04697-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics