Skip to main content

Amino Compound-Containing Lipids: a Novel Class of Signals Regulating Plant Development

  • Chapter
  • First Online:
Plant Developmental Biology - Biotechnological Perspectives

Abstract

Plant growth and development are driven by the integration of a vast number of signals including volatile compounds, small organic molecules, peptides, steroids and lipids. Among these, amino-containing signalling lipids such as alkamides and N-acyl ethanolamines (NAEs) have emerged as important regulators of cellular processes, including cell proliferation, growth and differentiation. Manipulation in the concentrations of alkamides and NAEs in plants by pharmacological, mutational and transgenic approaches affect morphogenetic processes including seed germination and post-embryonic shoot and root development. Further evidence for a role of these compounds in regulating physiological processes is supported by their occurrence in a wide range of plant species, their selective accumulation and rapid metabolism in response to developmental transitions, and by the recent identification of the enzymes that metabolize NAEs. Moreover, signal transduction cascades involving abscisic acid, cytokinins and nitric oxide have been found to interact with alkamides and NAEs, highlighting the importance of crosstalk between these novel small lipids and other classic signals for plant growth regulation. The discovery that N-acyl homoserine lactones (AHLs), a class of bacterial quorum-sensing signals structurally related to alkamides, can be perceived by plants opens the possibility that acylamides could be also involved in plant–bacterial interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anaya AL, Macías-Rubalcava M, Cruz-Ortega R, García-Santana C, Sánchez-Monterrubio PN, Hernández-Bautista BE, Mata R (2005) Allelochemicals from Stauranthus perforatus, a rutaceous three of the Yucatán Peninsula, México. Phytochemistry 66:487–494

    Article  CAS  Google Scholar 

  • Bargmann BO, Munnik T (2006) The role of phospholipase D in plant stress responses. Curr Opin Plant Biol 9:515–522

    Article  PubMed  CAS  Google Scholar 

  • Baskin TI, Wilson JE, Cork A, Williamson RE (1994) Morphology and microtubule organization in Arabidopsis roots exposed to orizalyn or taxol. Plant Cell Physiol 35:935–942

    PubMed  CAS  Google Scholar 

  • Bauer R, Reminger P (1989) TLC and HPLC analysis of alkamides in Echinacea drugs. Planta Med 55:367–371

    Article  PubMed  CAS  Google Scholar 

  • Beemster GTS, Fiorani F, Inzé D (2003) Cell cycle: the key to plant growth control? Trends Plant Sci 8:154–158

    Article  PubMed  CAS  Google Scholar 

  • Blancaflor EB, Hou G, Chapman KD (2003) Elevated levels of N-lauroylethanolamine, an endogenous constituent of desiccated seeds, disrupt normal root development in Arabidopsis thaliana seedlings. Planta 217:206–217

    PubMed  CAS  Google Scholar 

  • Campos-Cuevas JC, Pelagio-Flores R, Raya-González J, Méndez-Bravo A, Ortiz-Castro R, López-Bucio J (2008) Tissue culture of Arabidopsis thaliana explants reveals a stimulatory effect of alkamides on adventitious root formation and nitric oxide accumulation. Plant Sci 174:165–173

    Article  CAS  Google Scholar 

  • Caramelo JJ, Florin-Christensen J, Delfino JM (2003) Phospholipase activity on N-acyl phosphatidylethanolamines is critically dependent on the N-acyl chain length. Biochem J 374:109–115

    Article  PubMed  CAS  Google Scholar 

  • Casimiro I, Beekman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett M (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171

    Article  PubMed  CAS  Google Scholar 

  • Chapman KD (2004) Occurrence, metabolism, and prospective functions of N-acylethanolamines in plants. Prog Lipid Res 43:309–327

    Article  CAS  Google Scholar 

  • Christensen L, Lam J (1991) Acetylenes and related compounds in Heliantheae. Phytochemistry 30:11–49

    Article  CAS  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  PubMed  CAS  Google Scholar 

  • Ha CM, Kin GT, Kim BC, Jun JH, Soh MS, Ueno Y, Machida D, Tsukaya H, Nam HG (2003) The BLADE-ON-PETIOLE 1 gene controls leaf pattern formation through the modulation of meristematic activity in Arabidopsis. Development 130:161–172

    Article  PubMed  CAS  Google Scholar 

  • Hansen H, Moesgaard B, Petersen G, Hansen H (2002) Putative neuroprotective actions of N-acyl-ethanolamines. Pharmacol Ther 95:119–127

    Article  PubMed  CAS  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Quat Rev Biol 67:283–319

    Article  Google Scholar 

  • Himanen K, Boucheron E, Vaneste S, Almeida-Engler J, Inzé D, Beeckamn T (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14:2339–2351

    Article  PubMed  CAS  Google Scholar 

  • Howell SH, Lall S, Che P (2003) Cytokinins and shoot development. Trends Plant Sci 9:453–459

    Article  CAS  Google Scholar 

  • Hughes DT, Sperandio V (2008) Inter-kingdom signaling: communication between bacteria and their hosts. Nature Rev Microbiol 6:111–120

    Article  CAS  Google Scholar 

  • Kakimoto T (2003) Perception and signal transduction of cytokinins. Annu Rev Plant Biol 54:605–627

    Article  PubMed  CAS  Google Scholar 

  • Kanbe K, Naganawa H, Okamura M, Sasaki T, Hamada M, Okami Y, Takeuchi T (1993) Amidenin, a new plant growth regulating substance isolated from Amycolatopsis sp. Biosci Biotechnol Biochem 57:1261–1263

    Article  CAS  Google Scholar 

  • Kashiwada Y, Ito C, Katagiri H, Mase I, Komatsu K, Namba T, Ikeshiro Y (1997) Amides of the fruit of Zanthoxylum spp. Phytochemistry 44:1125–1127

    Article  CAS  Google Scholar 

  • Kunos G, Jarai Z, Batkai S, Isaac EJ, Liu J, Wagner JA (2000) Endocannabinoids as vascular modulators. Chem Phys Lipids 108:159–168

    Article  PubMed  CAS  Google Scholar 

  • Lafrance D, Marion D, Pezolet M (1990) Study of the structure of N-acyl dihexadecanoyl phosphatidylethanolamines in aqueous dispersion by infrared and Raman spectroscopies. Biochemistry 29:4592–4599

    Article  PubMed  CAS  Google Scholar 

  • Lamattina L, García-Mata C, Graciano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  PubMed  CAS  Google Scholar 

  • Laurerio-Rosario S, Silva A, Parente J (1996) Alkamides from Cissampelos glaberrima. Planta Med 62:376–377

    Article  Google Scholar 

  • Laux T, Mayer KFX (1998) Cell fate regulation in the shoot meristem. Sem Cell Dev Biol 9:195–200

    Article  CAS  Google Scholar 

  • Letchamo W, Livesey J, Arnason TJ, Bergeron C, Krutilina VS (1999) Cichoric acid and isobutylamide content in Echinacea purpurea as influenced by flower developmental stages. In: Janick J (ed) Perspectives on new crops and new uses. ASHS Press, Alexandria, VA, pp 494–498

    Google Scholar 

  • Liu J, Wang L, Harvey-White J, Osei-Hyiaman D, Razdan R, Gong Q, Chan AC, Zhou Z, Huang BX, Kim HY, Kunos G (2006) A biosynthetic pathway for anandamide. Proc Natl Acad Sci USA 103:13345–13350

    Article  PubMed  CAS  Google Scholar 

  • López-Bucio J, Acevedo-Hernández G, Ramírez-Chávez E, Molina-Torres E, Herrera-Estrella L (2006) Novel signals for plant development. Curr Opin Plant Biol 6:280–287

    Article  CAS  Google Scholar 

  • López-Bucio J, Millán-Godínez M, Méndez-Bravo A, Morquecho-Contreras A, Ramírez-Chávez E, Molina-Torres J, Pérez-Torres A, Higuchi M, Kakimoto T, Herrera-Estrella L (2007) Cytokinin receptors are envolved in alkamide regulation of root and shoot development in Arabidopsis. Plant Physiol 145:1703–1713

    Article  PubMed  CAS  Google Scholar 

  • LoVerme J, Russo R, La Rana G, Fu J, Farthing J, Raso G, Meli R, Hohmann A, Calignano A, Piomelli D (2006) Rapid broad-spectrum analgesia through activation of peroxisome proliferator-activated receptor alpha. J Pharmacol Exp Ther 319:1051–1061

    Article  PubMed  CAS  Google Scholar 

  • Malamy J, Benfey P (1997) Down and out in Arabidopsis: the formation of lateral roots. Trends Plant Sci 2:390–401

    Article  Google Scholar 

  • Molina-Torres J, Salgado-Garciglia R, Ramírez-Chávez E, del Río R (1996) Purely oleofinic alkamides in Heliopsis longipes and Acmella (Spillanthes) oppositifolia. Biochem System Ecol 24:43–47

    Article  CAS  Google Scholar 

  • Morquecho-Contreras A, López-Bucio J (2007) Cannabinoid-like signaling and other new developmental pathways in plants. Int J Plant Dev Biol 1:34–41

    Google Scholar 

  • Motes CM, Pechter P, Min-Yoo C, Yuh-Shu W, Chapman KD, Blancaflor E (2005) Differential effects of two phospholipase D inhibitors, 1-butanol and N-acylethanolamine, on in vivo cytoskeletal organization and Arabidopsis seedling growth. Protoplasma 226:109–123

    Article  PubMed  CAS  Google Scholar 

  • Movahed P, Jonsson BA, Birnir B, Wingstrand JA, Jorgensen TD, Ermund A, Sterner O, Zygmunt PM, Hogestatt ED (2005) Endogenous unsaturated C18 N-acylethanolamines are vanilloid receptor (TRPV1) agonists. J Biol Chem 280:38496–38504

    Article  PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signaling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  • Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N (2004) Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem 279:5298–5305

    Article  PubMed  CAS  Google Scholar 

  • Ortíz-Castro R, Martínez-Trujillo M, López-Bucio J (2008) N-acyl-L-homoserine lactones: a class of bacterial quórum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ 31:1497–1509

    Article  PubMed  CAS  Google Scholar 

  • Oz M, Alptekin A, Tchugunova Y, Dinc M (2005) Effects of saturated long-chain N-acylethanolamines on voltage-dependent Ca2+ fluxes in rabbit T-tubule membranes. Arch Biochem Biophys 434:344–351

    Article  PubMed  CAS  Google Scholar 

  • Pappan K, Austin-Brown S, Chapman K, Wang X (1998) Substrate selectivities and lipid modulation of plant phospholipase Dα, -β, and -γ. Arch Biochem Biophys 353:131–140

    Article  PubMed  CAS  Google Scholar 

  • Paria BC, Dey SK (2000) Ligand-receptor signaling with endocannabinoids in preimplantation embryo development and implantation. Chem Phys Lipids 108:211–220

    Article  PubMed  CAS  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    Article  PubMed  CAS  Google Scholar 

  • Qu L, Chen Y, Wang X, Scalzo R, Davis JM (2005) Patterns of variation in alkamides and cichoric acid in roots and above ground parts of Echinacea purpurea (L.) Moench. HortScience 40:1239–1242

    PubMed  CAS  Google Scholar 

  • Ramírez-Chávez E, López-Bucio J, Herrera-Estrella L, Molina-Torres J (2004) Alkamides isolated from plants promote growth and alter root development in Arabidopsis. Plant Physiol 134:1058–1068

    Article  PubMed  CAS  Google Scholar 

  • Razem FA, Baron K, Hill RD (2006) Turning on gibberellin and abscisic acid signaling. Curr Opin Plant Biol 9:454–459

    Article  PubMed  CAS  Google Scholar 

  • Reading NC, Sperandio V (2006) Quorum-sensing: the many languages of bacteria. FEMS Microbiol Lett 254:1–11

    Article  PubMed  CAS  Google Scholar 

  • Ríos-Chávez P, Ramírez-Chávez E, Armenta-Salinas C, Molina-Torres J (2003) Acmella radicans var. radicans: in vitro culture stablisment and alkamide content. In Vitro Cell Dev Biol-Plant 39:37–41

    Article  CAS  Google Scholar 

  • Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Van Breusegem F, Eber L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    Article  PubMed  CAS  Google Scholar 

  • Shresta R, Dixon RA, Chapman KD (2003) Molecular identification of a functional homologue of the mammalian fatty acid amide hydrolase in Arabidopsis thaliana. J Biol Chem 278:34990–34997

    Article  CAS  Google Scholar 

  • Shresta R, Kim SC, Dyer JM, Dixon RA, Chapman KD (2006) Plant fatty acid (ethanol) amide hydrolases. Biochem Biophys Acta 176:324–334

    Google Scholar 

  • Simon GM, Cravatt BF (2006) Endocannabinoid biosynthesis proceeding through glycerophospho-N-acylethanolamine and a role for alpha/beta-hydrolase in this pathway. J Biol Chem 281:26465–26472

    Article  PubMed  CAS  Google Scholar 

  • Stephanova AN, Jeonga Y, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185

    Article  CAS  Google Scholar 

  • Swamy MJ, Ramakrishnan M, Angerstein B, Marsh D (2000) Spin-label electron spin resonance studies on the mode of anchoring and vertical location of the N-acyl chain in N-acyl phosphatidylethanolamines. Biochemistry 39:12476–12484

    Article  PubMed  CAS  Google Scholar 

  • Teaster ND, Motes C, Tang Y, Wiant W, Cotter MQ, Wang YH, Kilaru A, Venables BJ, Hasenstein KH, González G, Blancaflor E, Chapman KD (2007) N-acylethanolamine metabolism interacts with abscisic acid signaling in Arabidopsis thaliana seedlings. Plant Cell 19:2454–2469

    Article  PubMed  CAS  Google Scholar 

  • Tripathy S, Venables B, Chapman K (1999) N-acylethanolamines in elicitor signal transduction and activation of defense gene expression. Plant Physiol 121:1299–1308

    Article  PubMed  CAS  Google Scholar 

  • Tsuboi K, Sun YX, Okamoto Y, Araki N, Tonai T, Ueda N (2005) Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase. J Biol Chem 280:11082–11092

    Article  PubMed  CAS  Google Scholar 

  • Venables BJ, Waggoner CA, Chapman KD (2005) N-acylethanolamines in selected legumes. Phytochemistry 66:1913–1918

    Article  PubMed  CAS  Google Scholar 

  • Wang X (2004) Lipid signaling. Curr Opin Plant Biol 7:329–336

    Article  CAS  Google Scholar 

  • Wang YS, Shresta R, Kilaru A, Wiant W, Venables BJ, Chapman KD, Blancaflor E (2006) Manipulation of Arabidopsis fatty acid amide hydrolase expression modifies plant growth and sensitivity to N-acylethanolamines. Proc Natl Acad Sci USA 103:12197–12202

    Article  PubMed  CAS  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum-sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  PubMed  CAS  Google Scholar 

  • Weyers JDB, Paterson NW (2001) Plant hormones and the control of physiological processes. New Phytol 152:375–407

    Article  CAS  Google Scholar 

  • Wilson RI, Nicoll RA (2002) Endocannabinoid signaling in the brain. Science 296:678–682

    Article  PubMed  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action and interaction. Ann Bot 95:707–735

    Article  PubMed  CAS  Google Scholar 

  • Worrall D, Ng CKY, Hetherington AM (2003) Sphingolipids, new players in plant signaling. Trends Plant Sci 8:317–320

    Article  PubMed  CAS  Google Scholar 

  • Wymann MP, Schneiter R (2008) Lipid signaling in disease. Nature Rev Mol Cell Biol 9:163–176

    Article  CAS  Google Scholar 

  • Zheng H, Zhong Z, Lai X, Chen WX, Li S, Zhu J (2006) A luxR/luxI-type quorum sensing system in a plant bacterium Mesorhizobium tianshanense, controls symbiotic nodulation. J Bacteriol 188:1943–1949

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. López-Bucio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ortiz-Castro, R., Méndez-Bravo, A., López-Bucio, J. (2010). Amino Compound-Containing Lipids: a Novel Class of Signals Regulating Plant Development. In: Pua, E., Davey, M. (eds) Plant Developmental Biology - Biotechnological Perspectives. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04670-4_11

Download citation

Publish with us

Policies and ethics