Skip to main content

Learning and Approximating the Optimal Strategy to Commit To

  • Conference paper
Algorithmic Game Theory (SAGT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5814))

Included in the following conference series:

Abstract

Computing optimal Stackelberg strategies in general two-player Bayesian games (not to be confused with Stackelberg strategies in routing games) is a topic that has recently been gaining attention, due to their application in various security and law enforcement scenarios. Earlier results consider the computation of optimal Stackelberg strategies, given that all the payoffs and the prior distribution over types are known. We extend these results in two different ways. First, we consider learning optimal Stackelberg strategies. Our results here are mostly positive. Second, we consider computing approximately optimal Stackelberg strategies. Our results here are mostly negative.

Some of these results were briefly presented as part of a talk at the 2009 Bellairs Workshop on Algorithmic Game Theory. This work is funded by: Alfred P. Sloan Research Fellowships, NSF Grant IIS-0812113, NSF Career Award 0745761 and Grant CNS-0540347.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In: FOCS, pp. 261–272 (2006)

    Google Scholar 

  2. Conitzer, V., Sandholm, T.: Computing the optimal strategy to commit to. In: Proceedings of the ACM Conference of EC, Ann Arbor, MI, USA, pp. 82–90 (2006)

    Google Scholar 

  3. Conitzer, V., Sandholm, T.: New complexity results about Nash equilibria. Games and Economic Behavior 63(2), 621–641 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cournot, A.A.: Recherches sur les principes mathématiques de la théorie des richesses (Researches into the Mathematical Principles of the Theory of Wealth) (1838)

    Google Scholar 

  5. Dantzig, G.: A proof of the equivalence of the programming problem and the game problem. In: Koopmans, T. (ed.) Activity Analysis of Production and Allocation, pp. 330–335. John Wiley & Sons, Chichester (1951)

    Google Scholar 

  6. Daskalakis, C., Goldberg, P., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. In: STOC, pp. 71–78 (2006)

    Google Scholar 

  7. Gilboa, I., Zemel, E.: Nash and correlated equilibria: Some complexity considerations. Games and Economic Behavior 1, 80–93 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Harrenstein, P., Brandt, F., Fischer, F.: Commitment and extortion. In: Proceedings of AAMAS, Honolulu, HI, USA (2007)

    Google Scholar 

  9. Jain, M., Pita, J., Tambe, M., Ordóñez, F.: Bayesian Stackelberg games and their application for security at Los Angeles international airport. SIGecom Exch. 7(2), 1–3 (2008)

    Article  Google Scholar 

  10. Maschler, M.: A price leadership method for solving the inspector’s non-constant-sum game. Naval Research Logistics Quarterly 13(1), 11–33 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nash, J.: Equilibrium points in n-person games. Proceedings of the National Academy of Sciences 36, 48–49 (1950)

    Google Scholar 

  12. Paruchuri, P., Pearce, J.P., Marecki, J., Tambe, M., Ordóñez, F.: Playing games for security: an efficient exact algorithm for solving Bayesian Stackelberg games. In: Proceedings of AAMAS, Estoril, Portugal, pp. 895–902 (2008)

    Google Scholar 

  13. Pita, J., Jain, M., Ordóñez, F., Portway, C., Tambe, M., Western, C.: Using game theory for Los Angeles airport security. AI Mag. 30(1), 43–57 (2009)

    Google Scholar 

  14. Roughgarden, T.: Stackelberg scheduling strategies. In: STOC, pp. 104–113. ACM, New York (2001)

    Google Scholar 

  15. von Stackelberg, H.: Marktform und Gleichgewicht. Springer, Vienna (1934)

    Google Scholar 

  16. von Stengel, B., Zamir, S.: Leadership with commitment to mixed strategies. Research Report LSE-CDAM-2004-01, London School of Economics (February 2004)

    Google Scholar 

  17. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory of Computing 3(1), 103–128 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Letchford, J., Conitzer, V., Munagala, K. (2009). Learning and Approximating the Optimal Strategy to Commit To. In: Mavronicolas, M., Papadopoulou, V.G. (eds) Algorithmic Game Theory. SAGT 2009. Lecture Notes in Computer Science, vol 5814. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04645-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04645-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04644-5

  • Online ISBN: 978-3-642-04645-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics