Advertisement

Dynamic Resource-Critical Workflow Scheduling in Heterogeneous Environments

  • Yili Gong
  • Marlon E. Pierce
  • Geoffrey C. Fox
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5798)

Abstract

Effective workflow scheduling is a key but challenging issue in heterogeneous environments due to the heterogeneity and dynamism. Based on the observations that not all tasks can run on all resources and acquired data transferring and queuing for a resource can be concurrent, we propose a dynamic resource-critical workflow scheduling algorithm which take into consideration the environmental heterogeneity and dynamism. We evaluate its performance by simulations and show that it outperforms another selected widely used approach.

Keywords

Dynamic Scheduling Resource-Critical Scheduling Workflow Heterogeneous Environments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The QuakeSim Project Website, http://quakesim.jpl.nasa.gov/
  2. 2.
    Gong, Y., Pierce, M.E., Fox, G.C.: Matchmaking Scientific Workflows in Grid Environments. In: 20th IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS 2007), Cambridge, MA (November 2007)Google Scholar
  3. 3.
    Nurmi, D., Brevik, J., Wolski, R.: QBETS: Queue bounds estimation from time series. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2007. LNCS, vol. 4942, pp. 76–101. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Yu, Z., Shi, W.: An Adaptive Rescheduling Strategy for Grid Workflow Applications. In: 21st IEEE International Parallel & Distributed Processing Symposium (IPDPS 2007), Long Beach, CA (March 2007)Google Scholar
  5. 5.
    Benoit, A., Hakem, M., Robert, Y.: Ault Tolerant Scheduling of Precedence Task Graphs on Heterogeneous Platforms. In: 22nd IEEE International Parallel & Distributed Processing Symposium (IPDPS 2008) Miami, FL (April 2008)Google Scholar
  6. 6.
    Dong, F., Akl, S.G.: Mobile Agent Based Workflow Rescheduling Approach for Grids. I. In: 20th IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS 2007), Cambridge, MA (November 2007)Google Scholar
  7. 7.
    Ranjan, R., Rahman, M., Buyya, R.: A Decentralized and Cooperative Workflow Scheduling Algorithm. In: 8th IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2008), Lyon, France (May 2008)Google Scholar
  8. 8.
    Wieczorek, M., Podlipnig, S., Prodan, R., Fahringer, T.: Bi-criteria Scheduling of Scientigc Workflows for the Grid. In: 8th IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2008), Lyon, France (May 2008)Google Scholar
  9. 9.
    Hunold, S., Rauber, T., Suter, F.: Scheduling Dynamic Workflows onto Clusters of Clusters Using Postponing. In: 8th IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2008), Lyon, France (May 2008)Google Scholar
  10. 10.
    Topcuouglu, H., Hariri, S., Wu, M.Y.: Performance-effective and Low-complexity Task Scheduling for Heterogeneous Computing. IEEE Transactions on Parallel and Distributed Systems 13(3), 260–274 (2002)CrossRefGoogle Scholar
  11. 11.
    Kwok, Y., Ahmad, I.: Dynamic Critical Path Scheduling: An Effective Technique for Allocating Task Graphs to Multiprocessors. IEEE Transactions on Parallel and Distributed Systems 7(5), 506–521 (1996)CrossRefGoogle Scholar
  12. 12.
    Yu, J., Buyya, R.: Taxonomy of Workflow Management Systems for Grid Computing. Journal of Grid Computing 3(3-4), 171–200 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yili Gong
    • 1
  • Marlon E. Pierce
    • 2
  • Geoffrey C. Fox
    • 3
  1. 1.Computer SchoolWuhan UniversityWuhanP.R. China
  2. 2.Community Grids LabIndiana UniversityBloomington
  3. 3.Community Grids Lab, Department of Computer Science, School of InformaticsIndiana UniversityBloomington

Personalised recommendations