Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 259))

Abstract

Analysis of the mechanical properties of existing road pavements is crucial for pavement rehabilitation and management problems. Numerous studies have focused on developing an efficient method for determining the structural conditions of pavements. Non-destructive testing (NDT) methods can characterize stress-strain behavior of pavement layers at relatively low strain levels. However, the majority of NDT techniques are based on measuring the deflections caused by an applied load to determine the stress-strain behavior. Structural analysis techniques can also calculate deflections using material and loading properties where it is commonly necessary to make an inversion between measured deflections and mechanical properties using a back-calculation tool. Soft computing techniques, i.e. neural networks, fuzzy logic, genetic algorithms, and hybrid systems, have successfully been used to perform efficient and precise back-calculation analyses. This chapter explains the advances in pavement back-calculation methodologies based on soft computing approaches by presenting the concepts behind them and the fundamental advantages of each. An alternative utilization of soft computing techniques for pavement engineering is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Callop, A.C., Cebon, D.: Stiffness reductions of flexible pavements due to cumulative fatigue damage. J. Transp. Eng.- ASCE 122, 131–139 (1996)

    Article  Google Scholar 

  2. Briggs, R.C., Lukanen, E.O.: Variations in backcalculated pavement layer moduli. In: Tayabji, S.D., Lukanen, E.O. (eds.) LTTP seasonal monitoring sites, NDT of Pavements and Backcalculation of moduli, vol. 3, pp. 113–128. Special Technical Publication, STP 1375, ASTM Publication, Pennsylvania (2000)

    Google Scholar 

  3. Tawfiq, K., Armaghani, J., Sobanjo, J.: Seismic pavement analyzer vs. FWD for pavement evaluation: comparative study. In: Tayabji, S.D., Lukanen, E.O. (eds.) NDT of Pavements and Backcalculation of Moduli, vol. 3, pp. 327–345. Special Technical Publication, STP 1375, ASTM Publication, Pennsylvania (2000)

    Chapter  Google Scholar 

  4. Ullidtz, P.: Will nonlinear backcalculation help. In: Tayabji, S.D., Lukanen, E.O. (eds.) NDT of Pavements and Backcalculation of Moduli, vol. 3, pp. 14–22. Special Technical Publication, STP 1375, ASTM Publication, Pennsylvania (2000)

    Chapter  Google Scholar 

  5. Goktepe, A.B., Agar, E., Lav, A.H.: Advances in Backcalculating the Mechanical Properties of Flexible Pavements. Adv. Eng. Softw. 37, 421–431 (2006)

    Article  Google Scholar 

  6. Nazarian, S., Stokoe, K.H.: Nondestructive evaluation of pavements by surface wave method. In: Bush, A.J., Baladi, G.Y. (eds.) NDT of Pavements and Backcalculation of Moduli, vol. 1, pp. 119–137. Special Technical Publication, STP 1026, ASTM Publication, Pennsylvania (1989)

    Chapter  Google Scholar 

  7. Seng, C.R., Stokoe, K.H., Roesset, J.M.: Effect of depth to bedrock on the accuracy of backcalculated moduli obtained with Dynaflect and FWD Tests, Special Report, SP 1175-5,Center for Transportation Research. University of Texas at Austin. Texas (1993)

    Google Scholar 

  8. Zhou, H.: Comparison of backcalculated and laboratory measured moduli on AC and granular base layer materials. In: Tayabji, S.D., Lukanen, E.O. (eds.) NDT of Pavements and Backcalculation of Moduli, vol. 3(3-37), pp. 161–172. Special Technical Publication, STP 1375, ASTM Publication, Pennsylvania (2000)

    Chapter  Google Scholar 

  9. Hoffman, M.S., Thompson, M.R.: Backcalculating nonlinear resilient moduli from deflection data, Transportation Research Record, 852, TRB, pp. 42–51. National Research Council, Washington DC (1982)

    Google Scholar 

  10. Tholen, O., Sharma, J., Terrel, R.L.: Comparison of FWD with other deflection testing devices, Transportation Research Record 1007, TRB, pp. 20–26. National Research Council, Washington, DC (1985)

    Google Scholar 

  11. Lytton, R.L.: Backcalculation of layer moduli, state of the art. In: Bush, A.J., Baladi, G.Y. (eds.) NDT of Pavements and Backcalculation of Moduli, vol. 1, pp. 7–38. Special Technical Publication, STP 1026, ASTM Publication, Pennsylvania (1989)

    Chapter  Google Scholar 

  12. Uzan, J.: Advanced backcalculation techniques. In: Von Quintus, H.L., Bush, A.J., Baladi, G.Y. (eds.) NDT of Pavements and Backcalculation of Moduli, vol. 2, pp. 3–37. Special Technical Publication, STP 1198, ASTM Publication, Pennsylvania (1994)

    Chapter  Google Scholar 

  13. Fwa, T.F., Tan, C.Y., Chan, W.T.: Backcalculation analysis of pavement-layer moduli using genetic algorithms, Transportation Research Record 1570, TRB, pp. 134–142. National Research Council, Washington DC (1997)

    Google Scholar 

  14. Reddy, M.A., Reddy, K.S., Pandey, B.B.: Backcalculation of pavement moduli using genetic algorithms. J. High Res. Board 66, 1–10 (2002)

    Google Scholar 

  15. Meier, R.W., Rix, G.J.: An initial study of surface wave inversion using artificial neural networks. Geotech. Test J. 16, 425–431 (1993)

    Article  Google Scholar 

  16. Meier, R.W., Rix, G.J.: Backcalculation of flexible pavement moduli using artificial neural networks, Transportation Research Record, 1448, TRB, pp. 75–82. National Research Council, Washington, DC (1994)

    Google Scholar 

  17. Meier, R.W., Rix, G.J.: Backcalculation of flexible pavement moduli from dynamic deflection basins using artificial neural networks, Transportation Research Record, 1473, TRB, pp. 72–81. National Research Council, Washington, DC (1995)

    Google Scholar 

  18. Tutumluer, E., Seyhan, U.: Neural network modeling of anisotropic aggregate behavior from repeated load triaxial tests, Transportation Research Record, 1615, pp. 86–93. National Research Council, Washington, DC (1998)

    Google Scholar 

  19. Kim, Y.R., Xu, B., Kim, Y.: A new backcalculation procedure based on dispersion analysis of FWD time history deflections and surface wave measurements using ANNs. In: Tayabji, S.D., Lukanen, E.O. (eds.) NDT of Pavements and Backcalculation of Moduli, vol. 3, pp. 297–312. ASTM Publication, STP 1375, Pennsylvania (2000)

    Chapter  Google Scholar 

  20. Goktepe, A.B., Agar, E., Lav, A.H.: Comparison of multilayer perceptron and adaptive neuro-fuzzy system on backcalculating the mechanical properties of flexible pavements. ARI Bull. of Ist Tech. Uni. 54, 65–77 (2005)

    Google Scholar 

  21. Principle, J.C., Euliano, N.R., Lefebvre, W.C.: Neural and Adaptive Systems. John Wiley and Sons Co., New York (2000)

    Google Scholar 

  22. Kecman, V.: Learning and Soft Computing. MIT Press, Massachusetts (2001)

    MATH  Google Scholar 

  23. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall Inc., New Jersey (1999)

    MATH  Google Scholar 

  24. Jang, J.S.R.: ANFIS: Adaptive-network-based fuzzy inference systems. IEEE T Syst. Man Cy. 23, 665–685 (1993)

    Article  Google Scholar 

  25. Mamlouk, M.S.: Use of dynamic analysis in predicting field multilayer pavement moduli, Transportation Research Record, 1043, TRB, pp. 113–119. National Research Council, Washington DC (1985)

    Google Scholar 

  26. Sebaaly, B., Davies, T.G., Mamlouk, M.S.: Dynamics of falling weight deflectometer. J. Transp. Eng-ASCE 111, 618–632 (1985)

    Article  Google Scholar 

  27. Stolle, D.F.E.: Modeling of dynamic response of pavements to impact loading. Comput. Geotech. 11, 83–94 (1991)

    Article  Google Scholar 

  28. Huang, Y.H.: Pavement Analysis and Design. Prentice Hall Inc., New Jersey (1993)

    Google Scholar 

  29. Arora, J., Tandon, V., Nazarian, S.: Continuous deflection testing of Texas Pavements, Project Summary Report No: 0-4380-S, Center for Transportation Infrastructure Systems. The University of Texas El Paso (2006)

    Google Scholar 

  30. Sivaneswaran, N., Kramer, S.L., Mahoney, J.P.: Advanced backcalculation using a nonlinear least squares optimization technique, Transportation Research Record, 1293, TRB, pp. 93–102. National Research Council, Washington, DC (1991)

    Google Scholar 

  31. Harichandran, R.S., Yeh, M.S., Baladi, G.Y.: MICH-PAVE: A nonlinear finite element program for analysis of flexible pavements, Transportation Research Record 1286, TRB, pp. 123–131. National Research Council, Washington DC (1990)

    Google Scholar 

  32. Magnuson, A.H., Lytton, R.L., Briggs, R.C.: Comparison of Computer Predictions and Field Data for Dynamic Analysis of Falling Weight Deflectometer Data, Transportation Research Record, 1293, TRB, pp. 124–135. National Res. Council, Washington, DC (1991)

    Google Scholar 

  33. Magnuson, A.H.: Computer analysis of falling weight deflectometer data, part I: Vertical displacement computations on the surface of a uniform surface pressure distribution, Research Report No: 1215-1F, Texas Transportation Institute, Collage Station (1988)

    Google Scholar 

  34. Newcomb, D.E.: Development and evaluation of regression method to interpret dynamic pavement deflections, Ph.D. Dissertation, Department of Civil Engineering. University of Washington, Seattle (1986)

    Google Scholar 

  35. Reddy, M.A., Reddy, K.S., Pandey, B.B.: Selection of genetic algorithm parameters for backcalculation of pavement moduli. The Int. J. Pave Eng. 5, 81–90 (2004)

    Article  Google Scholar 

  36. Mamlouk, M.S., Davies, G.D.: Elasto-dynamic analysis of pavement deflections. J. Transp. Eng- ASCE 110, 536–567 (1984)

    Article  Google Scholar 

  37. Uzan, J.: Dynamic linear backcalculation of pavement material parameters. J. Transp. Eng-ASCE 120, 109–125 (1994)

    Article  Google Scholar 

  38. Stubbs, N., Torpunuri, V.S., Lytton, R.L., Magnuson, A.H.: A methodology to identify material properties in pavements modeled as layered viscoelastic half-spaces. In: Von Quintus, H.L., Bush, A.J., Baladi, G.Y. (eds.) NDT of Pavements and Backcalculation of Moduli, vol. 2, pp. 159–169. Special Technical Publication, STP 1198, ASTM Publication, Pennsylvania (1994)

    Google Scholar 

  39. Sousa, J.B., Weissman, S.L., Sackman, J.L., Monismith, C.L.: Nonlinear elastic viscous with damage model to predict permanent deformation of asphalt concrete mixes, Transportation Research Record, 1136, TRB, pp. 57–68. National Research Council, Washington, DC (1993)

    Google Scholar 

  40. Chang, D.W.: Nonlinear effects on dynamic response of pavements using the NDT technique, PhD Dissertation, Department of Civil Engineering. University of Texas at Austin, Austin (1991)

    Google Scholar 

  41. Sousa, J.B., Monismith, C.L.: Dynamic response of paving materials, Transportation Research Record, 1136, TRB, pp. 57–68. National Res. Council, Washington, DC (1987)

    Google Scholar 

  42. Shao, K.Y.: Dynamic interpretation of Dynaflect, Falling Weight Deflectometer and spectral analysis of surface waves tests on pavement system, PhD Dissertation. University of Texas at Austin, Texas (1985)

    Google Scholar 

  43. Roesset, J.M.: Stiffness and damping coefficients of foundations. In: O’Neal, M.W., Dobry, K. (eds.) Proceedings of ASCE National Convention on Dynamic Response of Pile Foundations, Analytical Aspects, New York, pp. 1–30 (1980)

    Google Scholar 

  44. Kausel, E., Roesset, J.M.: Stiffness matrices for layered soils. Bul. Seism. Soc. Am. 71, 1743–1761 (1981)

    Google Scholar 

  45. Haskell, N.A.: The dispersion of surface waves on multilayered media. Bul. Seism. Soc. Am. 71, 17–34 (1953)

    MathSciNet  Google Scholar 

  46. Lysmer, J.: Lumped mass method for Rayleigh waves. Bul. Seism. Soc. Am. 60, 89–104 (1970)

    Google Scholar 

  47. Founquinos, R., Roesset, J.M., Stokoe II, K.H.: Response of pavement systems to dynamic loads imposed by nondestructive tests, Transp. Res. Rec. 1504, TRB, Washington, DC, pp. 57–67 (1995)

    Google Scholar 

  48. Nazarian, S., Stokoe, K.H.: Use of surface waves in pavement evaluation, Transp. Res. Rec. 1070, TRB, pp. 132–144. National Res. Council, Washington, DC (1986)

    Google Scholar 

  49. Nazarian, S., Stokoe, K.H., Hudson, W.R.: Use of spectral analysis of surface waves method for determination of moduli and thicknesses of pavement systems, Transp. Res. Rec. 921, TRB, pp. 38–45. National Res. Council, Washington, DC (1983)

    Google Scholar 

  50. Liang, R.Y., Zhu, J.X.: Efficient computational algorithms for forward and backward analysis of a dynamic pavement system. Comput. Struct. 69, 255–263 (1998)

    Article  MATH  Google Scholar 

  51. Al-Khoury, R., Scarpas, A., Kasbergen, C., Blaauwendraad, J.: Spectral element technique for efficient parameter identification of layered media. I. Forward calculation. Int. J. Solids Struct. 38, 1605–1623 (2001)

    Article  MATH  Google Scholar 

  52. Al-Khoury, R., Scarpas, A., Kasbergen, C., Blaauwendraad, J.: Spectral element technique for efficient parameter identification of layered media. II. Inverse calculation. Int. J. Solids Struct. 38, 8753–8772 (2001)

    Article  MATH  Google Scholar 

  53. Al-Khoury, R., Scarpas, A., Kasbergen, C., Blaauwendraad, J.: Spectral element technique for efficient parameter identification of layered media. III. Viscoelastic aspects. Int. J. Solids Struct. 39, 2189–2201 (2002)

    Article  MATH  Google Scholar 

  54. Al-Khoury, R., Kasbergen, C., Scarpas, A., Blaauwendraad, J.: Poroelastic spectral element for wave propagation and parameter identification in multi-layer systems 39, 4073–4091 (2002)

    Google Scholar 

  55. Rumelhart, D.E., McClelland, J.L.: Parallel distributed processing: explorations in the microstructure of cognition. MIT Press, Massachusetts (1986)

    Google Scholar 

  56. Hagan, M.T., Demuth, H., Beale, M.: Neural Network Design. PWS Publishing Company, New York (1996)

    Google Scholar 

  57. Jacobs, R.A.: Increased rates of convergence through learning rate adaptation. Neural Networks 1, 295–307 (1988)

    Article  Google Scholar 

  58. Reidmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proceedings of the IEEE International Conference on Neural Networks, New York, May 10-15, 1993, pp. 586–591 (1993)

    Google Scholar 

  59. Battiti, R.: First and second order methods for learning: between steepest descent and Newton’s method. Neural Comput. 4, 141–166 (1992)

    Article  Google Scholar 

  60. Fletcher, R.: Practical Methods of Optimization. John Wiley and Sons Co., New York (1987)

    MATH  Google Scholar 

  61. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific Publishing, Massachusetts (1995)

    MATH  Google Scholar 

  62. Moller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6, 525–533 (1993)

    Article  Google Scholar 

  63. Hagan, M.T., Menhaj, M.: Training feedforward networks with the Marquardt algorithm. IEEE T. Neural Network 5, 989–993 (1994)

    Article  Google Scholar 

  64. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach Studies 7, 1–13 (1975)

    Article  MATH  Google Scholar 

  65. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE T. Syst. Man Cy. 15, 116–132 (1985)

    MATH  Google Scholar 

  66. Jang, J.S.R.: ANFIS: Adaptive-network-based fuzzy inference systems. IEEE T. Syst Man Cy. 23, 665–685 (1993)

    Article  Google Scholar 

  67. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall, New Jersey (1997)

    Google Scholar 

  68. Tutumluer, E., Meier, R.W.: Attempt at resilient modulus modeling using artificial neural networks. Transport Res. Rec. 1560, TRB, Washington, DC, pp. 1-6 (1996)

    Google Scholar 

  69. Abdallah, I., Ferregut, C., Nazarian, S., Lucero, M.O.: Prediction of remaining life of flexible pavements with artificial neural network models. In: Tayabji, S.D., Lukanen, E.O. (eds.) NDT of Pavements and Backcalculation of Moduli, vol. 3, pp. 484–498. Special Technical Publication, STP 1375, ASTM Publication, Pennsylvania (2000)

    Chapter  Google Scholar 

  70. Saltan, M., Tigdemir, M., Karasahin, M.: Artificial neural network application for flexible pavement thickness modeling. Turkish J. Eng. and Env. Sci. 26, 243–248 (2002)

    Google Scholar 

  71. Goktepe, A.B., Agar, E., Lav, A.H.: Role of Learning Algorithm in Neural Network Based Backcalculation of Flexible Pavements. ASCE J. Comput. Civil Eng. 20, 370–373 (2006)

    Article  Google Scholar 

  72. Nguyen, D., Widrow, B.: Improving the learning speed of 2-layer neural Networks by choosing initial values of the adaptive weights. In: Proceedings of the International Joint Conference on Neural Networks, vol. 3, pp. 21–26 (1990)

    Google Scholar 

  73. Harichandran, R.S., Ramon, C.M., Mahmood, T., Baladi, G.Y.: MICHBACK user’s manual. Michigan Department of Transportation, Michigan (1994)

    Google Scholar 

  74. Alkasawneh, W.: Backcalculation pavement moduli using genetic algorithms, PhD. Distertation, The University of Akron (2007)

    Google Scholar 

  75. Pan, E., Chen, E., Alkasawneh, W.: Layered Flexible Pavement Studies: Challenges in Forward and Inverse Programs. Int. J. Pave. Res. Techn. 1, 12–16 (2008)

    Google Scholar 

  76. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley Co., Reading (1989)

    MATH  Google Scholar 

  77. Chambers, L.: The practical handbook of genetic algorithms. Chapman & Hall / CRC Press, Washington, D.C (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lav, A.H., Goktepe, A.B., Lav, M.A. (2009). Backcalculation of Flexible Pavements Using Soft Computing. In: Gopalakrishnan, K., Ceylan, H., Attoh-Okine, N.O. (eds) Intelligent and Soft Computing in Infrastructure Systems Engineering. Studies in Computational Intelligence, vol 259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04586-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04586-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04585-1

  • Online ISBN: 978-3-642-04586-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics