Early Schedulability Analysis with Timed Use Case Maps

  • Jameleddine Hassine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5719)


The ability to perform quantitative analysis at the requirements level supports the detection of design errors during the early stages of a software development life cycle. This would help reduce the cost of later redesign activities in case of unsatisfactory performance. This paper presents a novel approach to perform schedulability analysis at the requirement stage using Timed Use Case Maps (TUCM) language. The proposed approach relies on the computation of Worst-Case Execution Time (WCET), resource allocation and scheduling policies. Timing and resource constraints are first incorporated into UCM specifications, then mapped to Abstract State Machines (ASM) formalism and implemented in AsmL language, allowing for simulation and schedulability analysis. The applicability of the approach is illustrated using an example of the Automatic Protection Switching (APS) feature.


Object Management Group Schedulability Analysis Time Automaton Abstract State Machine Software Development Life Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gurevich, Y.: Logic and the Challenge of Computer Science. In: Börger, E. (ed.) Current trends in theoretical computer science, pp. 1–57. Computer Science Press (1988)Google Scholar
  2. 2.
    Hassine, J., Rilling, J., Dssouli, R.: Timed Use Case Maps. In: Gotzhein, R., Reed, R. (eds.) SAM 2006. LNCS, vol. 4320, pp. 99–114. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    International Telecommunications Union: Recommendation Z.151 (11/08), User requirements notation (URN) - Language definition,
  4. 4.
    Hassine, J., Rilling, J., Dssouli, R.: Abstract Operational Semantics for Use Case Maps. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 366–380. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Hassine, J., Rilling, J., Dssouli, R.: Formal Verification of Use Case Maps with Real Time Extensions. In: Gaudin, E., Najm, E., Reed, R. (eds.) SDL 2007. LNCS, vol. 4745, pp. 225–241. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Ramamritham, K., Stankovic, J.A.: Scheduling Algorithms and Operating Systems Support for Real-Time Systems. Proceedings of the IEEE 82(1), 55–67 (1994)CrossRefGoogle Scholar
  7. 7.
    Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment. J. ACM 20(1), 46–61 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ramamritham, K., Stankovic, J.A., Shiah, P.F.: Efficient Scheduling Algorithms for Real-Time Multiprocessor Systems. IEEE Trans. Parallel Distrib. Syst. 1(2), 184–194 (1990)CrossRefGoogle Scholar
  9. 9.
    Burns, A., Wellings, A.J.: Real-Time Systems and Programming Languages: ADA 95, Real-Time Java, and Real-Time POSIX. Addison-Wesley Longman, Boston (2001)Google Scholar
  10. 10.
    Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P., Staschulat, J., Stenström, P.: The Worst-Case Execution-Time Problem—Overview of Methods and Survey of Tools. Trans. on Embedded Computing Sys. 7(3), 1–53 (2008)CrossRefGoogle Scholar
  11. 11.
    Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-Verlag New York, Inc, Secaucus (1999)CrossRefzbMATHGoogle Scholar
  12. 12.
    Manna, Z., Pnueli, A.: Clocked Transition Systems. Technical report, Stanford University, Stanford, CA (1996)Google Scholar
  13. 13.
    Alur, R., Dill, D.L.: A theory of Timed Automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. International Journal on Software Tools for Technology Transfer 1(1-2), 134–152 (1997)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hassine, J.: Formal Semantics and Verification of Use Case Maps. PhD thesis, Concordia University, Montreal, Quebec (2008)Google Scholar
  16. 16.
    Bowman, H., Gomez, R.: Concurrency Theory - Calculi and Automata for Modelling Untimed and Timed Concurrent Systems. Springer, London (2006)zbMATHGoogle Scholar
  17. 17.
    ASML: Microsoft Research: The Abstract State Machine Language,
  18. 18.
    SpecExplorer: Microsoft Research: Spec Explorer tool,
  19. 19.
    Telcordia SONET Transport Systems: GR-253-CORE, Synchronous Optical Network (SONET) Transport Systems: Common Generic Criteria, Section 8,
  20. 20.
    Object Management Group (OMG): Response to the OMG RFP for Schedulability, Performance and Time, v. 2.0. OMG document ad/2002-03-04 (2002)Google Scholar
  21. 21.
    Di Natale, M., Saksena, M.: Schedulability analysis with UML. In: Lavagno, l., Martin, G., Selic, B. (eds.) UML For Real: Design of Embedded Real-Time Systems, pp. 241–269. Kluwer Academic Publishers, Norwell (2003)CrossRefGoogle Scholar
  22. 22.
    Woodside, M., Petriu, D.: Capabilities of the UML Profile for Schedulability Performance and Time (SPT). In: Workshop SIVOES-SPT held in conjunction with the 10th IEEE (2004)Google Scholar
  23. 23.
    Object Management Group (OMG): UML Profile for MARTE, Beta 1,
  24. 24.
    Object Management Group (OMG): UML Superstructure Specification, v2.2,
  25. 25.
    Peraldi-Frati, M.A., Sorel, Y.: From High-Level Modelling of Time in MARTE to Real-Time Scheduling Analysis,
  26. 26.
    Espinoza, H., Dubois, H., Gérard, S., Pasaje, J.L.M., Petriu, D.C., Woodside, C.M.: Annotating UML models with non-functional properties for quantitative analysis. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 79–90. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Object Management Group (OMG): UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms,
  28. 28.
    Petriu, D.C., Amyot, D., Woodside, C.M.: Scenario-Based Performance Engineering with UCMNAV. In: Reed, R., Reed, J. (eds.) SDL 2003. LNCS, vol. 2708, pp. 18–35. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  29. 29.
    Alvarez, J.M., Diaz, M., Llopis, L., Pimentel, E., Troya, J.M.: Integrating Schedulability Analysis and Design Techniques in SDL. Real-Time Syst. 24(3), 267–302 (2003)CrossRefzbMATHGoogle Scholar
  30. 30.
    International Telecommunications Union: Recommendation Z.100 (11/07), Specification and Description Language (SDL),
  31. 31.
    Kim, S., Cho, S., Hong, S.: Automatic Implementation of Real-Time Object-Oriented Models and Schedulability Issues. In: Proceedings of the Sixth International Workshop on Object-Oriented Real-Time Dependable Systems, pp. 137–141. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  32. 32.
    Saksena, M., Karvelas, P., Wang, Y.: Automatic Synthesis of Multi-Tasking Implementations from Real-Time Object-Oriented Models. In: ISORC 2000: Proceedings of the Third IEEE International Symposium on Object-Oriented Real-Time Distributed Computing, pp. 360–367. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jameleddine Hassine
    • 1
  1. 1.Cisco SystemsOntarioCanada

Personalised recommendations