Advertisement

The Challenges of Using SDL for the Development of Wireless Sensor Networks

  • Klaus Ahrens
  • Ingmar Eveslage
  • Joachim Fischer
  • Frank Kühnlenz
  • Dorian Weber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5719)

Abstract

In recent years, Wireless Sensor Networks (WSNs) have been primarily used to build ad-hoc telecommunication infrastructures from scratch or as low-cost alternatives to traditional networks. But the diversity of applications with typically narrow node resources and requirements of already existing information infrastructures sets hard constraints to WSN. The software development process becomes even more complicated when real-time constraints have to be taken into account. This is the case when the physical processes of the WSN environment have to be observed and are realized in space and time. For the development of such WSN we present a model-based framework (GAF4WSN), where the well-known techniques SDL, UML and ASN.1 are involved. The framework was already successfully used for the development of a new generation of Earthquake Early Warning Systems (EEWS). An Earthquake Synthesizer (ES) and an Experiment Management System (EMS) complete the framework, which supports the modelling, simulation, installation and administration of different EEWS approaches in combination with a Geographic Information System (GIS).

Keywords

model-based development sensor systems wireless sensor networks simulation code generation experiment management SDL UML ASN.1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    International Telecommunications Union: Recommendation Z.100 (11/07), Specification and Description Language (SDL), http://www.itu.int/rec/T-REC-Z.100/en
  2. 2.
    International Telecommunications Union: Recommendation X.690 (11/08), Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER), http://www.itu.int/rec/T-REC-X.690/en
  3. 3.
    Seismic eArly warning For EuRope (SAFER), http://www.saferproject.net
  4. 4.
    PragmaDev RTDS V3.4, http://www.pragmadev.com
  5. 5.
    The Network Simulator – ns-2, http://www.isi.edu/nsnam/ns
  6. 6.
    Henderson, T.R., Roy, S., Floyd, S., Riley, G.F.: ns-3 project goals. In: WNS2 ’06: Proceeding from the 2006 workshop on ns-2: the IP network simulator. ACM Press, New York (2006)Google Scholar
  7. 7.
    JiST – Java in Simulation Time / SWANS – Scalable Wireless Ad hoc Network Simulator, http://jist.ece.cornell.edu
  8. 8.
  9. 9.
    Kuorilehto, M., Hännikäinen, M., Hämäläinen, T.D.: Rapid design and evaluation framework for wireless sensor networks. Ad Hoc Netw. 6(6), 909–935 (2008)CrossRefGoogle Scholar
  10. 10.
    Park, S., Savvides, A., Srivastava, M.B.: Simulating networks of wireless sensors. In: WSC 2001: Proceedings of the 33nd conference on Winter simulation, pp. 1330–1338. IEEE Computer Society Press, Los Alamitos (2001)CrossRefGoogle Scholar
  11. 11.
    Downard, I.: Simulating sensor networks in ns-2, Naval Research Laboratory (2003)Google Scholar
  12. 12.
    Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: accurate and scalable simulation of entire TinyOS applications. In: SenSys 2003: Proceedings of the 1st international conference on Embedded networked sensor systems, pp. 126–137. ACM, New York (2003)Google Scholar
  13. 13.
    Perrone, L., Nicol, D.: A scalable simulator for TinyOS applications. In: Proc. Winter Simulation Conference 2002, vol. 1, pp. 679–687. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  14. 14.
    Kuhn, T., Geraldy, A., Gotzhein, R., Rothländer, F.: ns+SDL – The Network Simulator for SDL Systems. In: Prinz, A., Reed, R., Reed, J. (eds.) SDL 2005. LNCS, vol. 3530, pp. 103–116. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Milkereit, C., Fleming, K., Picozzi, M., Jäckel, K.H., Hönig, M.: Deliverable D4.5 Development of seismological analysis of single station recordings and network trigger for Early Warning purposes, http://casablanca.informatik.hu-berlin.de/wiki/images/4/41/D4.04_4.05_SAFER_GFZ.pdf
  16. 16.
    ShakeMap Manual; Technical Manual, Users Guide and Software Guide, http://pubs.usgs.gov/tm/2005/12A01/pdf/508TM12-A1.pdf
  17. 17.
    Erdik, M., Fahjan, Y., Ozel, O., Alcik, H., Mert, A., Gul, M.: Istanbul Earthquake Rapid Response and the Early Warning System. Bulletin of Earthquake Engineering 1(01), 157–163 (2003)CrossRefGoogle Scholar
  18. 18.
    Picozzi, M., Milkereit, C., Zulfikar, C., Ditommaso, R., Erdik, M., Safak, E., Fleming, K., Ozel, O., Zschau, J., Apaydin, N.: Wireless technologies for the monitoring of strategic civil infrastructures: an ambient vibration test of the Faith Bridge, Istanbul, Turkey, http://casablanca.informatik.hu-berlin.de/wiki/images/2/23/Picozzi_et_al._Ambient_Vibration_Fatih_Bridge_BEE.pdf
  19. 19.
    Open Geospatial Consortium (OGC), http://www.opengeospatial.org/standards/wfs
  20. 20.
  21. 21.
    Fischer, J., Kühnlenz, F., Eveslage, I., Ahrens, K., Nachtigall, J., Lichtblau, B., Heglmeier, S., Milkereit, C., Fleming, K., Picozzi, M.: Deliverable D4.22 Middleware for Geographical Applications, http://casablanca.informatik.hu-berlin.de/wiki/images/2/2f/D4.22_SAFER_UBER.pdf
  22. 22.
    ODEMx - Object oriented Discrete Event Modelling, http://odemx.sourceforge.net
  23. 23.
  24. 24.
  25. 25.
    Kühnlenz, F., Theisselmann, F., Fischer, J.: Model-driven Engineering for Transparent Environmental Modeling and Simulation. In: Troch, I., Breitenecker, F. (eds.) Proceedings MathMod Vienna 2009 (2009) ISBN 978-3-901608-35-3Google Scholar
  26. 26.
    Fischer, J., Kühnlenz, F., Eveslage, I., Ahrens, K., Nachtigall, J., Lichtblau, B., Heglmeier, S., Milkereit, C., Fleming, K., Picozzi, M.: Deliverable D4.21 Develop Software for Network Connectivity, http://casablanca.informatik.hu-berlin.de/wiki/images/7/73/D4.21_SAFER-UBER.pdf
  27. 27.
    Wang, R.: A simple orthonormalization method for stable and efficient computation of Green’s functions. Bulletin of the Seismological Society of America 89(3), 733–741 (1999)MathSciNetGoogle Scholar
  28. 28.
    Milkereit, C., Fleming, K., Picozzi, M., Jäckel, K.H., Hónig, M.: Deliverable D4.4 Development of the seismological analysis software to be implemented in the Low Cost Network, http://casablanca.informatik.hu-berlin.de/wiki/images/4/41/D4.04_4.05_SAFER_GFZ.pdf
  29. 29.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Klaus Ahrens
    • 1
  • Ingmar Eveslage
    • 1
  • Joachim Fischer
    • 1
  • Frank Kühnlenz
    • 1
  • Dorian Weber
    • 1
  1. 1.Department of Computer ScienceHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations