Advertisement

Modelling Critical Infrastructures in Presence of Lack of Data with Simulated Annealing – Like Algorithms

  • Vincenzo Fioriti
  • Silvia Ruzzante
  • Elisa Castorini
  • A. Di Pietro
  • Alberto Tofani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5775)

Abstract

We propose a method to analyze inter-dependencies of technological networks and infrastructures when dealing with few available data or missing data. We suggest a simple inclusive index for inter-dependencies and note that even introducing broad simplifications, it is not possible to provide enough information to whatever analysis framework. Hence we resort to a Simulated Annealing–like algorithm (SAFE) to calculate the most probable cascading failure scenarios following a given unfavourable event in the network, compatibly with the previously known data. SAFE gives an exact definition of the otherwise vague notion of criticality and individuates the “critical” links/nodes. Moreover, a uniform probability distribution is used to approximate the unknown or missing data in order to cope with the recent finding that Critical Infrastructures such as the power system exhibit the self-organizing criticality phenomenon. A toy example based on a real topology is given; SAFE proves to be a reasonably fast, accurate and computationally simple evaluation tool in presence of more than 50% missing data.

Keywords

interdependencies simulated annealing Critical Infrastructures 

PACS number(s)

9.75.Fb Structures and organization in complex systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barabasi, A., Albert, R.: Emergence of scaling in random networks. Science 286 (1999)Google Scholar
  2. 2.
    Carreras, A., Dobson, A.: Evidence of self organized criticality in power systems. In: Hawaii International Conference on System Science (2001)Google Scholar
  3. 3.
    Carreras, A., Dobson, A.: Critical points in an electric power transmission model for cascading failure. Chaos 12, 985–992 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
  5. 5.
    Ahmed, W., Sheta, A.: Optimization of electric power distribution using hybrid simulate annealing approach. Am. J. App. Sci. 5, 559–564 (2008)CrossRefGoogle Scholar
  6. 6.
    Strogatz, S.: Exploring complex networks. Nature 3, 410–412 (2001)Google Scholar
  7. 7.
    Zio, E.: From complexity to reliability efficiency. Int. J. Critical Infrastructures 3, 3–31 (2007)CrossRefGoogle Scholar
  8. 8.
    Wu, W.: Nonlinear system theory: another look at dependence. PNAS 102 (2005)Google Scholar
  9. 9.
    Rinaldi, J., et al.: Identifying critical infrastructure interdependencies. IEEE Control System Magazine 21, 337–351 (2001)CrossRefGoogle Scholar
  10. 10.
    Rosas-Casals, R.: Topological vulnerability of the EU power grid, DELIS-TR-437, EU Integrated Project (2006)Google Scholar
  11. 11.
    Nelwamondo, V., Marwala, T.: Teciques for handling missing data. Int. J. Inn, Comp. 4, 1426–1507 (2008)Google Scholar
  12. 12.
    Carreras, B., et al.: Evidence of self-organizing criticality in a time series of electric power system blackouts. IEEE Trans. Circ. Sys. 51(9), 1733 (2004)CrossRefGoogle Scholar
  13. 13.
    Carreras, A., Dobson, A.: Critical points in an electric power transmission model for cascading failure. Chaos 12, 985–992 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
  15. 15.
    Carreras, B., et al.: Evidence of self-organizing criticality in a time series of electric power system blackouts. IEEE Trans. Circ. Sys. 51(9), 1733 (2004)CrossRefGoogle Scholar
  16. 16.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Vincenzo Fioriti
    • 1
  • Silvia Ruzzante
    • 2
  • Elisa Castorini
    • 1
  • A. Di Pietro
    • 1
  • Alberto Tofani
    • 1
  1. 1.ENEA, Centro Ricerche CasacciaRomaItaly
  2. 2.ENEA, Centro Ricerche PorticiNapoliItaly

Personalised recommendations